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Abstract
This paper gives an overview of the creation and implementation of a new network

simulator targeted at educational use. This simulator, entitled DANS (Dan’s

Asynchronous Network Simulator), uses a process-based approach to emulating basic

network components (processors, links, etc.) while also providing a means of producing

deterministic results. A versatile but easy to use GUI is provided in addition to a

number of example algorithms and documentation describing their creation. Both the

simulator’s architecture and implementation are reviewed in detail and areas for future

work are identified.

1 Introduction

In research, areas relating to computer networks and distributed systems it is often desired
that new algorithms and methods provide detailed analysis of their performance and correctness
in a realistic environment. However, the creation and maintenance of such hardware environments
is often costly both in terms of time and the monetary expenses required. A common alternative
to such hardware based test beds is the use of software based simulation methods to create vir-
tual test beds that approximate the variables and conditions founds in their real hardware based
counterparts. Outside the realm of research, network simulations provide tools for prototyping,
developing and visualization protocols and algorithms that are helpful for both developers and
students wishing to gain further insight into the inner workings of a distributed system.

A common approach to network simulation is to utilize discrete event simulation. In the discrete
event method all possible changes to a systems state are considered to be part of events that occur
at a specified instant of time. All pending future events that have not yet occurred are stored in
an event set (commonly implemented as a priority queue) and accessed and applied to the network
state at the time indicated in the event. Using this method it is possible to jump directly from the
end of one event to the start of another without necessarily having to simulate the time elapsed
between the two events (potentially reducing the time required to run lengthy simulations). For
example if the transmission of some packet occurs at time T and arrives at its destination at time
T + ∆T , it is not necessary to simulate the time, ∆T , that it takes the packet to be transmitted
assuming no other relevant state changes take place during that time.

An alternative approach, and the one utilized in this paper, is the process-based method. In
the process-based method each activity or actor is modelled by an individual process or thread.
Events created by processes both trigger changes to the system’s state and invoke actions by
other processes. For example, in a network simulation each processor/node might be modelled as
a distinct thread and transmitting a packet would consist of one thread creating an event that
both updates the network state and eventually wakes the thread corresponding to the receiving
processor. This method can produce more modular and easier to understand code but introduces
the complexities of concurrency and synchronization.

A large number of attempts have been made towards the development of network simulation
tools but only a handful have gained widespread acceptance in both academic research and indus-
try application. Perhaps the most popular of these is the ns line of simulators that started with the
REAL (REalistic And Large) computer network simulator[1] upon which ns-1[2], ns-2[3] and ns-
3[4] are based. These simulators use a discrete event model and aim to provide an open simulation
environment for advancing networking research and education. ns-3, the most recent incarnation
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of the simulator, supports both IP and non-IP based networks as well as wireless simulations (the
primary focus of the majority of users). Other simulators include the Georgia Tech Network Sim-
ulator (GTNetS)[5], OPNET Modeler (now Riverbed Modeler)[6], OMNeT++[7], and NetSim[8]
all of which use a discrete event model. GTNetS and OMNeT++ provide open solutions aimed at
research applications while OPNET and NetSim are commercial solutions that are aimed towards
prototyping, planning and network development.

While these efforts are perhaps adequate for research and industry application they are lacking
for the domain of education, particularly for the studying of distributed algorithms. The added
complexity required to realistically emulate the upper OSI layers and the physical structure of real
networks tends to require users to commit a significant investment in both time and effort into
learning the basic functions of the simulator despite only requiring a small subset of the features
offered. The work described in this paper aspires to create a simplistic and largely GUI driven
simulator for visualizing asynchronous distributed algorithms that is just sufficiently complex to
support the most common algorithms that would be studied in an educational setting. Realistic
modelling of the underlying OSI layers and physical network structure is sacrificed in favour of a
more straightforward and high level representation.

The implemented simulator, referred to as DANS (Dan’s Asynchronous Network Simulator),
models a given network as a set of processors, links and a collection of global settings describing how
the simulation will be conducted. Algorithms running on each processor are able to trigger send
events that both affect the networks state and trigger subsequent events in receiving processors. A
process-based method is used in which each algorithm on each processor is modelled as a thread
that is awakened periodically (either by being triggered by a send event or after a set period of
time) to update the network state and send/receive any messages left in its message queue. A
versatile but easy to use GUI is provided to allow network editing and live visualization of current
simulations.

The remainder of this paper is divided into the following sections; Section 2 details the specifi-
cations and objectives of the implemented network simulator, Section 3 gives a high level overview
of the simulator’s architecture and explains how communication between each component is ac-
complished, Section 4 discusses the tools and libraries used in implementation as well as how users
may create algorithms for use in the simulator, and finally Section 5 provides concluding remarks
and directions for future work. Additional documentation and usage instructions for the simulator
can be found in the appendices.

2 Objectives & Specification

The main objective of DANS is to provide a simple and easy to use network simulator that
is just sufficient in capabilities to accurately simulate the majority of the distributed algorithms
studied in the CS9668: Internet Algorithmics course1 taught at the University of Western Ontario.
This includes algorithms that cover leader election, broadcasting, building search trees, finding a
shortest path, consensus2, and Chord[10]. The proceeding subsections detail the requirements and
specifications given for the project as well as any additional features added.

1http://www.csd.uwo.ca/faculty/solis/cs868b/2014/index.html
2Not all consensus problems are solvable in an asynchronous environment[9].
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2.1 Simulation Specification

Table 1 outlines the requirements for the simulator back-end (i.e. all components of the simula-
tor other than the user interface). Requirements starting with “SIM P” are primary requirements
given in the projects description, while requirements starting with “SIM E” are extra requirements
added in addition to those given the project description.

Table 1: Simulation Requirements

Req# Requirement Description

SIM P1 Input The simulator should take as input a set of parameters including
the number of processors, set of neighbours for each processor,
the algorithm A that the processors must execute, speed of each
processor, delay of each communication link, probability that each
processor will fail, probability that each link will fail, whether
Bizantine failures are allowed, etc.

SIM P2 Processor speed & link de-
lay

Each processor and link should have a mutable speed or delay
setting that controls the speed at which the processor completes
cycles of its main loop or the speed at which a link can transmit
messages.

SIM P3 Failure probability Each link and processor should have a mutable failure probability
setting that determines the likelihood of a processor or link failing
during the execution of the simulation.

SIM P4 Bizantine failures Both clean and Bizantine failures should be supported for proces-
sors.

SIM P5 Execution The system must execute the specified distributed algorithm on
each processor, taking care of delivering all messages that the
processors exchange among themselves.

SIM P6 Speed & delay change There should be support for the speed and/or delay of the pro-
cessors and links to change over time during the execution of the
algorithm.

SIM P7 Algorithm support Simulator should support a variety of simple algorithms, similar
to those discussed in CS9668.

SIM E1 Link bandwidth Each link should support a mutable bandwidth setting that con-
trols the number of messages a link can transmit over a given
period of time.

SIM E2 Byte errors Each link should should have a mutable byte error probability
that determines if a given byte will contain an error (i.e. the byte
will be changed to a different value when received).

SIM E3 Different algorithms Each processor should be able to run a different algorithm if de-
sired. This would enable simulations that involve different al-
gorithms communicating with each other (e.g. client/sever type
situations).

Continued on next page

3



Table 1 – continued from previous page

Req# Requirement Description

SIM E4 Multiple algorithms on
one processor

Each processor should support running multiple algorithms simul-
taneously that have access to the same shared memory object. Al-
gorithms running on different processors should not have access
to the shared memory object of remote processors.

SIM E5 Ports Each algorithm running on a processor should be set to listen on
a given port and be able to send messages to any remote port.
Messages transmitted to a processor are only delivered to an al-
gorithm listening on the remote port specified in the message.

SIM E6 Pause, unpause, restart
simulation

The simulation should be pauseable and restartable without hav-
ing to restart the simulator application.

SIM E7 Simulation statistics The simulator should log and track basic statistics about the sim-
ulation including number of messages sent and number of cycles
each processor has executed.

SIM E8 Directional links Support for both directional and bidirectional links between pro-
cessors.

SIM E9 Deterministic simulation Given the same settings and initial network state, the simulator
should return the same results (assuming the given algorithms are
deterministic).

2.2 GUI Specification

Table 2 outlines the requirements for the GUI front-end (i.e. all components that make up
the user interface). Requirements starting with “GUI P” are primary requirements given in the
projects description, while requirements starting with “GUI E” are extra requirements added in
addition to those given the project description.

Table 2: GUI Requirements

Req# Requirement Description

GUI P1 Graphical interface A graphical user interface is required for visualizing, controlling
and setting up the simulation.

GUI P2 Usability The graphical interface and the simulator as a whole should be
easy to use.

GUI E1 Network editor The graphical interface should support the creation and editing
of simulated networks. The user should be able to add/remove
processors and connect them with links.

Continued on next page
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Table 2 – continued from previous page

Req# Requirement Description

GUI E2 Runtime algorithm load-
ing/switching

The user should be able to select and/or change which algorithm
is being run on each processor at runtime.

GUI E3 Common editing tools The interface should support common editing tools and functions
including copy, paste, cut, undo, redo, select all, select none, etc.

GUI E4 Logging The simulator should support logging to the command line, graph-
ical interface, and to a file. Different logging levels should be
available to control the logs verbosity.

GUI E5 Zoom The interface should support zooming in and out on the network
graph.

GUI E6 Full screen The interface should have full screen support for presentations.

GUI E7 Export network graph The simulator should support saving and printing the network
graph visualization as an image.

3 Architecture & Design

The DANS architecture is divided into two logical parts. A front-end consisting of all user
interface components including the GUI, keyboard input and logging system. And a back-end
consisting of components involved in the actual representation and simulation of a given network
and algorithm. The back-end is designed to be completely independent of the front-end such that
the front-end could be replaced without requiring changes to the back-end (e.g. the GUI could
be replaced with a console based interface). The following subsections detail the architecture of
both the front and back-end components in addition to describing the “Tick” system introduced
to produced deterministic results.
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Figure 1: Synchronous v.s. asynchronous models of distributed algorithms.
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3.1 The Tick System

Traditionally, distributed algorithms assume either a synchronous or asynchronous model. In
the synchronous model (shown in Figure 1.a), it is assumed that each processor pauses after
executing a cycle or “round” of the distributed algorithm and waits for all other processors to get
to the same point before continuing. Furthermore, the distributed algorithm is broken up into two
phases, a message sending phase and a message receiving phase that must occur in the same order
on each processor. This ensures that all messages are sent and received in a given round and that
all processors are executing the same round at the same time. In this way the execution time of
an algorithm can be discussed in terms of rounds (e.g. how many round does an algorithm take
to terminate or what is the state of the network after i rounds).

In the asynchronous model (shown in Figure 1.b), no assumptions are made as to time each
processor takes to complete a cycle of the algorithm and no restrictions are placed on when the
algorithm can send or receive messages. In this way each processor immediately starts the next
cycle of its algorithm after completing the last. No guarantee is given that each processor may be
executing the same cycle of the algorithm or that any message will be sent or received in the same
(or any) cycle. In terms of simulation this model can be problematic in that the current state of
the network at a given time Ti may be different for each execution even if the same initial network
state and settings are used (as shown in Figure 2). For example, if a given algorithm is executed
on 4 processors and each cycle completes at the times shown in Figure 2.a a second execution of
the same algorithm with the same settings might have different results (in terms of when cycles
start and end) if an individual processor is delayed for some reason as shown in Figure 2.b. This
could happen for a number of reasons including a thread waiting for a resource to unlock or CPU
time being delegated differently on subsequent executions.

To meet the requirement that the results of the simulation be deterministic (requirement
SIM E9) a new “Tick” system is introduced. In this system, time is counted in “ticks” rather
than rounds or traditional units of time. A tick is defined as a variable length of time that is
sufficiently large enough that any algorithm being simulated can complete a single cycle. Each
processor is then configured to take a set number of ticks to complete one cycle of the algorithm
and each link is configured to take a set number of ticks to transmit a message. To allow the vary-
ing speeds and delays found in the asynchronous model a pseudorandomly determined amount of
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Figure 2: Nondeterministic nature of asynchronous simulation. Both a) and b) are execution of
the same algorithm that result in different system states at time Ti.
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change in the speed/delay of each processor/link is allowed. The result remains deterministic as
the seed for the pseudorandom function is provided by the user with the initial settings for the
simulation such that the same changes are applied at the same times for the same seed. This style
of execution is displayed in Figure 3.

DANS supports synchronous3, asynchronous4 and tick based execution. Users are allowed to
specify a minimum tick length such that the length of a tick is:

Max = Maximum time required to complete one cycle of any algorithm being simulated.
Min = User define minimum tick speed
Tick Length = Min if Min > Max else Max

3.2 Simulation Back-End

The main elements of the back-end simulation are the processor, link, message and algorithm
objects. Each of these objects is contained in a single network state object and coordinated by a
single network manager thread. Each algorithm on each processor is contained in its own thread
that is responsible for executing that algorithm. For example if two algorithms are ran on four
processors eight threads would be used, one per algorithm per processor. Links are controlled by
the network manager thread which periodically updates each link’s state and ensures its messages
are sent to the correct processor at the correct time. The following subsections detail the design
behind each of these components.

3.2.1 Processors

Processors represent the distributed systems the algorithms will be executed upon and nodes
in the network graph. The processor object (shown in Figure 4.b) contains a list of settings and
statistics stored in a concurrent hash map5 indexed by the name of the setting or statistic (i.e.
the name is the key of the entry in the hash map). Settings determine how the processor will
function in the simulation (possible settings are described in Table 7 in Appendix B) and statistics
keep track of various figures related to the execution of the algorithms on the processor during the

3If all processors are given a delay of 1 and links a delay of 0.
4If all processors are given a delay of 0.
5https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentHashMap.html
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simulation (possible statistics are described in Table 5 in Appendix B). A list of the processors
neighbours and links connected to the processor are also stored in a concurrent hash map.

Each processor is able to run 1 to n algorithms and contains n output queues and n algorithm
object, one for each algorithm. Every algorithm registered to a processor must “listen” on a
unique port number such that its queue only receives messages sent to its specific port. The
output queue represents the message buffer for the given algorithm and messages are removed in
order upon calling the receive command. Each output queue is a custom object but essentially
provides functions that indirectly access a concurrent linked queue6.

All algorithms running on a given processor have access to a shared memory object represented
by a concurrent hash map. It is up to the algorithms to determine how the shared memory is
used and the keys used to index any values stored in the map. Also, while the hash map its self is
thread safe, it is up to the algorithm’s implementation to ensure the values stored in the map are
properly synchronized if they are not primitive types.

3.2.2 Links

Links represent directional connections between processors over which messages can be trans-
mitted and the edges of the network graph. Like processors, the link object (as shown in Figure 4.a)
uses a concurrent hash map to store settings and statistics about the individual link (a description
of each possible setting and statistic is given in Tables 8 and 6 respectively in Appendix B). Links
store a reference to their target and source processors as well as an input queue that contains
messages being transmitted over the link. As with the output queues used by the processor object,
a links input queue is a custom object that utilizes a concurrent linked queue to store messages.

6https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentLinkedQueue.html
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+Message(toID: String, msg: String)
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+Message(toID: String, msg: String, port: int, isLinkID: boolean)
+from(): String
+to(): String
+link(): String
+message(): String
+size(): int
+port(): int
+sourcePort(): int
+sent(): int
+received(): int
+toString(): String
+toInt(): int
+toDouble(): double
+toLong(): long

Figure 5: Message class UML diagram.

3.2.3 Messages

Messages are strings of variable length that are contained in a message object that includes
additional meta data about the message including its destination, origin, source port, target port,
size, etc. A UML class for the message class is given in Figure 5. Messages are sent by processors
(on behalf of the algorithms they run) by adding them to the appropriate link which in turns tags
the message with the time (in ticks) it was received and stores it in its output queue. Periodically
(at least once per tick, but often more), the network manager will invoke the transfer method
on each link object. The transfer method peeks at the top of the link’s message output queue
and compares the time the message was sent with the current time (in ticks) and determines
if the message should be removed from the queue and sent to the appropriate processor (this
determination is based on the delay and bandwidth of the link). If a message is removed, the
transfer method is called again on the link until no more message can be sent. When a processor
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receives a message from a link it adds it to the queue for the algorithm matching the target port
listed in the message. This process is shown in Figure 6.

3.2.4 Algorithms

Algorithms are user defined programs that have limited access to the simulator back-end and
are restricted to only using methods defined in the algorithm class (detailed in Section 4.3). The
algorithm class isolates algorithms to only accessing elements of the processor they are executed
on, enforcing the distributed system model. All algortihms running on the same processor share
the same settings, statistics and shared memory object. User defined algorithms should contain
an event loop that receives/sends messages and composes the main logic of the algorithm. One
cycle of this loop will take a specified number of ticks (as defined in the processor’s settings) with
a minimum of one cycle per tick.

3.2.5 Network State

The network state maintains the current state of the simulation at a given point in time. It
contains all elements of the simulation and their individual settings, statistics, and states. The
network state object (shown in Figure 7.a) uses a concurrent hash map to store settings, statistics,
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the set of processors, the set of links and the set of algorithms used in the current simulation. The
settings and statistic collections contain global properties and defaults that effect or describe the
whole network being simulated (and are described in detail in Appendix B in Tables 4 and 9).
The links and processor collections are indexed by the unique identifier assigned to each link and
processor allowing for efficient lookups. The algorithms collection contains the set of user created
algorithm classes that have been loaded at run time, indexed by the name of the class. Finally
a primitive integer type is used to keep track of the current tick. In addition to the concurrency
protections offered by the ConcurrentHashMap type, locks are used to ensure that all operations
on the network state are thread safe.

3.2.6 Network Manager

The network manager (shown in Figure 7.b) is the main thread of the simulator and is respon-
sible for creating, waking and terminating the algorithm threads when appropriate. It contains a
reference to the network state and the current simulation status (e.g. running, stopped, paused,
etc.). Additionally, it is responsible for incrementing the tick value in the network state and period-
ically calling the transfer method on each link to ensure messages are delivered to the algorithms’
input queues at the correct time (account for the links bandwidth and delay).

3.3 GUI Front-End

The GUI front-end consists of a GUI object and handlers for the keyboard and user interface.
The GUI object (shown in Figure 8.a) is responsible for configuring and initializing the graphical
interface and contains the Java swing GUI components and the JGraph graph visualization/editor.
The GUI Handler (shown in Figure 8.b) deals with all logic regarding events caused by a user’s
interactions with the graphical interface and handles all communication with the simulator back-
end. Similarly, the Keyboard Handler deals with all keyboard based input and translates keyboard
short cuts into GUI actions that the GUI handler can deal with.

All GUI events and updates are handled by special event dispatch thread (EDT) that is solely
allowed to change the state of the GUI. This is both due to the built in swing GUI components not
being thread safe and to maintain the separation between the back-end and front-end. As such no
back-end thread is allowed to directly edit, update or otherwise alter any of the GUI components.
Instead the network state, processors and links implement an observer software pattern that allows
any object implementing the correct interface to register its self and be automatically informed
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Keyboard 
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Swing
Components GUI Handler

Network 
State

GUI

a) GUI Object                                                               b) GUI Handler

Figure 8: GUI object and GUI Handler. Orange boxes represent swing based GUI components
and red boxes represent references to other custom objects.
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Figure 9: Process by which network state update events are sent from the back-end to the front-end
GUI.

of any changes to the network state. In the case of the GUI Handler update events from the
network state are added to the swing event queue (via the SwingUtilities.invokeLater method)
and processed in a FIFO order in the EDT. This process is shown in Figure 9 and allows both
the back-end to require no knowledge of the front-end and avoids any currency issues as all GUI
updates are handled in a single thread.

As the network state object is fully synchronized and thread safe, the GUI handler is able make
direct calls from the EDT to update settings and values in the network state so long as these calls
do not block or delay the execution of the EDT. For example, the GUI handler could remove a
processor from the network state on a mouse click, but it could not wait or do a loop until some
property of the network state has changed as this would block the EDT and cause the GUI to
become unresponsive.

4 Implementation Details

The following subsections give additional details about the implementation of the simulator
including the tools used, description and properties of the codebase, and further details about the
implementation of user defined algorithms.
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Figure 10: Physical executable lines of code per component.

4.1 Tools & Libraries

The simulator back and front-ends are implemented in Java 8 and is not backwards compatible
with older versions of Java. The GUI front-end uses the built in swing widget toolkit for creating
GUI elements and utilizes the JGraphX7 library for graph visualization and editing. Several classes
from the JGraphX library are extended to provide additional features or changes required for the
simulator. Extended classes include mxCell, mxConnectPreview, mxGraph and mxGraphLayout.
Finally, toolbar and menu icons from the Java Look-and-Feel Graphics Repository (JLFGR)8

library are also used in the GUI.

4.2 Codebase

The simulator codebase is divided into four parts, the GUI front-end (package dans.GUI ), the
simulation back-end (package dans.network), utilities (package dans.util) and algorithms (package
dans.algorithm). Packages dans.GUI and dans.network contain the front and back-end compo-
nents as described in the previous sections. Package dans.util contains utility classes that provide
simple services for the other packages (including a logging service). Package dans.algorithm con-
tains the abstract algorithm class for users to extend (as described in Section 4.3) as well as several

7https://github.com/jgraph/jgraphx
8http://www.oracle.com/technetwork/java/index-138612.html

Table 3: Codebase Metrics

Metric Count

Source Files 54
Directories 8
Lines of Code 10715
Blank Lines of Code 1635
Physical Executable Lines of Code 7933
Logical Executable Lines of Code 6253
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Algorithm
{abstract}

+getID(): String {leaf}
+getPort(): int {leaf}
+send(msg: Message): boolean {leaf}
+receive(wait: boolean): Message {leaf}
+getNeighbors(): String[] {leaf}
+getLinks(): String[] {leaf}
+print(text: String) {leaf}
+display(text: String) {leaf}
+doMainLoop(): boolean {leaf}
+terminate() {leaf}
+algorithm(): Object {abstract}
...

Figure 11: UML class diagram for abstract algorithm class. Some methods omitted for space
reasons.

example algorithms. A break down of the number of executable lines of code per division is given
in Figure 10 and overall counts are given in Table 3.

4.3 Algorithm Creation

As described in Section 3.2.4 users may create algorithms by extending the abstract Algorithm
class (UML diagram shown in Figure 11). This class provides methods that grant limited access
to the properties of the processor the algorithm is executed on as well as the ability to send
and receive messages. All user created algorithms should follow the template given in Listing 1,
such that they contain a single event loop in the algorithm method that handles the sending and
receiving of all messages. This loop should run until the value of doMainLoop() returns false or the
algorithm has finished running (it is acceptable to break or return out of the loop if the algorithm
should terminate). The algorithm method may return a single value that represents the result of

Listing 1: Algorithm Template
1 import dans.algorithm.Algorithm;

2 import dans.algorithm.Message;

3

4 public class MyAlgorithm extends Algorithm {

5

6 @Override

7 public Object algorithm () {

8 //Do algorithm setup here
9

10 while(doMainLoop ()) {

11 //Main algorithm code
12 //Break, return, or call terminate() when done
13 }

14

15 //Code to run before termination
16 return MyResults;

17 }

18 }
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the execution which is displayed when the processor terminates.
A receive method is provided that will either immediately return the next message in the input

queue (or null) or wait for the next message to arrive depending on the arguments given. If the
algorithm waits for a message it will not block the execution of any other algorithm (i.e. the other
algorithms running will not wait for it to finish its cycle before continuing and the tick value will
be incremented normally). The send method returns a boolean value indicating if the message
was added to the links output queue successfully and will return immediately in either case (i.e.
the send method does not wait for the message to be delivered).

Complete documentation of the Algorithm and Message classes are given in the JavaDoc found
at http://cs1.ca/cs9668/async. Example algorithms for leader election, broadcasting, and
doing simple calculations using a BFS tree are given in Appendix C.

5 Conclusion

DANS provides a simple and easy to use network simulator for visualizing and prototyping
basic distributed algorithms that is aimed at educational use. While both traditional synchronous
and asynchronous modes of operation are supported (by configuring the delays in a certain way
as described in Section 3.1) a new Tick based system is introduced that allows for deterministic
results while maintaining most properties of an asynchronous simulation. A detailed description of
the DANS architecture and design is given as well as details about the Java based implementation.
Additional documentation for the simulator can be found in the Appendixes (including example
algorithms) and complete documentation of the Algorithm and Message classes (the two classes
users would interact with) can be found at http://cs1.ca/cs9668/async.

There are a number of directions for future work beyond simply fixing the known bugs and
limitations listed in Appendix D. Some possible features include adding support for wireless net-
works, increasing the realism of the simulation (e.g. more closely modelling the OSI layers), adding
more network editing tools, adding additional simulation statistics, allowing for editing while the
simulation is paused, adding addtional documentation and examples, automatic generation of dif-
ferent kinds of networks, automatic randomization of processor and link settings and support for
automatic network graph layouts.
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Appendix

Appendix A: Simulator Manual

Running the Simulator

DANS requires a Java version of 8 or higher to function properly. The JGraphX and JLFGR
libraries are also required but should be embedded in the jar build of DANS. To run the simulator
ensure DANS.jar is in the current directory and type the following in to the console/command
line:

java -jar DANS.jar

DANS will only function correctly in desktop environments that support the swing GUI (i.e. it
will not work in console only environments).

Using the GUI

GUI Components:

Network Graph 
Editing Window

Properties Tab

Tool Bar

Status Bar

Menu Bar

Network Graph Editing Window: This window displays the current visualization of the net-
work graph and allows editing of links and processors while the simulation is stopped. Se-
lecting a processor or link in this window will change what properties are displayed in the
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properties tab (e.g. if a processor is selected, settings for that processor will be shown in the
properties tab).

Properties Tab: This window displays statistics and settings for the currently selected object in
the network graph editing window. The tabs change what kind of settings or statistics are
displayed (e.g. the algorithms tab displays details about the algorithms registered with the
currently selected processor). A detailed description of each setting and statistic is given in
Appendix B.

Status Bar: The status bar displays the current tick the simulation is on as well as the current
location of the mouse relative to the network graph (and accounting for zoom levels).

Tool Bar: The tool bar displays buttons that activate different tools or editing modes. See the
next subsection for details on each button’s function.

Menu Bar: The menu bar displays additional features not necessarily displayed on the tool bar.

Button functions & Other GUI Elements:

1.    2.  3.    4.  5.    6.   7.   8.  9. 10.  11.12.13.  14.15.16.  17. 18.    19.                        20.

21.

25. 26.

22.
23.

24.

1. New: Create a new simulation. Any unsaved work will be lost.

2. Open: Open a previously saved simulation. Any unsaved work will be lost.
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3. Save: Save the current simulation to a file.

4. Undo: Undo the last network graph editing action (does not effect settings changed in the
properties tab).

5. Redo: Redo the last network graph editing action (does not effect settings changed in the
properties tab).

6. Selection: Activates the selection editing mode. In the selection editing mode, clicking on
a processor or link will select them and allow you to hold down the mouse button to move
the object.

7. Pan: Activates the panning editing mode. If the network graph is zoomed in to the point
that scroll bars are shown, the panning editing mode will allow you to move your view of the
graph. This has no effect if the scroll bars are not shown.

8. Add Processor: Activates the processor editing mode. In this editing mode clicking in any
blank space in the network graph editing window will create a processor.

9. Add Link: Activates the link editing mode. In this editing mode clicking on a processor
will allow you to create a link to the processor that is clicked next. Clicking on a blank space
will remove the incomplete link.

10. Delete: Activates the delete editing mode. Any processor or link clicked on while in this
editing mode will be deleted.

11. Play: Start the simulation. While the simulation is running most editing features will be
disabled.

12. Pause: Pause the currently running simulation. A simulation must be paused before it can
be restarted.

13. Restart: If the simulation has terminated or is currently paused you may restart the sim-
ulation. Restarting the simulation will return the simulation to an editable state like it was
before the play button was pressed. A running simulation must be paused before it may be
restarted.

14. Toggle Log: Display or hide the logging window.

15. Toggle Properties: Display or hide the properties tab.

16. Toggle Grid: Display or hide the grid.

17. Zoom In: Zoom in on the network graph.

18. Zoom Out: Zoom out on the network graph.

19. Load Algorithm: Displays a file chooser window so that you can select an algorithm to
load. The first time an algorithm is loaded it is automatically set as the default algorithm.
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20. Select Default Algorithm: Sets the default algorithm for processors to run. When se-
lected, all algorithms registered as listening on the default port are changed to the selected
default algorithm and processors created in the future will have the default algorithm regis-
tered on the default port.

21. Properties Tab: See Appendix B for details on the settings and statistics displayed in the
properties tab.

22. Processor: Circles in the network graph editing window represent processors. Processors
that are green are in an OK or running state. Processors that are red are terminated and/or
have encountered an exception. Processors that are orange have experienced a failure as
a result of the failure probability setting in the processor’s settings. Double clicking on a
processor will allow you to edit its current ID.

23. Link: Arrows in the network graph editing window represent links between processors.
Links that are blue are in an OK or not transmitting state. Links that are green are actively
transmitting a message that should be displayed in text beside the link (blue text for messages
going into the link and green for messages leaving it). Links that are orange have experienced
a failure as a result of the failure probability setting in the link’s settings. Clicking on either
end of a link will allow you to drag it to a new processor to reassign it.

24. Warning: A flashing yellow exclamation mark icon indicates that an algorithm has not yet
been assigned to the processor. If the simulation is run without assigning an algorithm to a
processor, the processor will terminate immediately.

25. Mouse Location: The current mouse location relative to the network graph (accounting
for zoom levels).

26. Tick: The current tick value of the simulation.

Keyboard Shortcuts:

Delete: Delete the currently selected object in the network graph editing window.

Ctrl-a: Select all objects in the network graph editing window.

Ctrl-d: Select none.

Ctrl-x: Cut.

Ctrl-c: Copy.

Ctrl-p: Paste.

Ctrl-=: Zoom in.

Ctrl–: Zoom out.

=: Reset zoom.

Ctrl-z: Undo.
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Ctrl-y: Redo.

F1: Selection edit mode.

F2: Pan edit mode.

F3: Processor edit mode.

F4: Link edit mode.

F5: Delete edit mode.

F12: Toggle fullscreen mode.
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Appendix B: Properties Tab Settings & Statistics

Statistics

Table 4: Global Network Statistics

Statistic Description

Network State The current state of the network (e.g. running, stopped, paused, etc.).

Tick The current tick the simulation is on.

Messages Sent The number of messages in total that have been sent up to this point in the simu-
lation.

Bytes Sent The number of bytes in total that have been sent up to this point in the simulation.

Cycles The total number of cycles all processors have completed.

Clean Fails The total number of processors that have encountered a clean failure.

Byzantine Fails The total number of processors that have encountered a Byzantine failure.

Link Fails The total number of links that have encountered a failure.

Packets Lost The total number of messages that all links have dropped.

Link Errors The total number of bytes that have had errors in all messages sent.

Table 5: Processor Statistics

Statistic Description

Status The status of the selected processor (e.g. running, terminated, failed, etc.).

Messages The number of messages this processor has sent (includes totals from all algorithms
running on that processor).

Messages in Bytes The number of bytes this processor has sent (includes totals from all algorithms
running on that processor).

Cycles The number of cycles completed by all algorithms running on this processor.

Table 6: Link Statistics

Statistic Description

Status The status of the selected link (e.g. inactive, active, failed, etc.).

Messages The number of messages that have been sent through the selected link.

Messages in Bytes The number of bytes that have been sent through the selected link.

Messages per Tick The number of messages this link sends per tick on average.

Packets Lost The number of messages that have been dropped by this link.

Packets Errors The number of bytes that have contained errors due to faults in this link.
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Properties

Table 7: Processor Settings

Setting Description

ID A unique identifier assigned to the selected processor. The ID is used to
identify what processors to send messages to in user created algorithms.

Delay The time in ticks it will take the processor to complete a cycle. If the value
is set to 0, the processor will ignore the tick system and the next cycle will
start immediately after the last cycle finished. If all processors have a delay
of 1 and all links have a delay of 0 the simulation will be synchronous.

Speed Change Method The method used for determining the change in the processors delay. NONE
will keep the delay constant (no change). UNIFORM will choose a uniformly
distributed pseudo random number each cycle to be added to the delay (this
number can be negative). NORMAL will choose a normally (Gaussian) dis-
tributed pseudo random number each cycle to be added to the delay (this
number can be negative). CONSTANT a constant value will be added to the
delay each cycle (can be negative).

Change Seed The seed used for generating pseudo random changes to the delay.

Change Min The minimum value the processor’s delay can fall to. Should be 1 or more.

Change Max The maximum value the processor’s delay can rise to. Should be greater than
min.

Normal Change Mean Sets the mean of the normal distribution if a normal change method is being
used.

Normal Change STDV Sets the standard deviation of the normal distribution if a normal change
method is being used.

Uniform Change Min Sets the minimum random value chosen if the uniform change method is being
used (can be negative).

Uniform Change Max Sets the maximum random value chosen if the uniform change method is being
used. Can be negative but should be greater than the minimum change.

Constant Change Amount Sets the constant amount the delay changes by if the constant change method
is being used (can be negative).

Clean Failure Rate The probability (in percent) that the processor will fail in any given cycle.
Should be a value between 0 and 100. If the processor fails using this method,
all message will be sent before it terminates.

Byzantine Failure Rate The probability (in percent) that the processor will fail after sending any
message. Should be a value between 0 and 100. No guarantee is given that all
messages in a given cycle will be sent.
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Table 8: Link Settings

Setting Description

ID A unique identifier assigned to the selected link. The ID can be used to identify
what link to send messages on in user created algorithms.

Delay The time in ticks it will take for the selected link to transmit its message to
the target processor. If a delay of 0 is given, messages will skip the link output
queue and be directly placed in the target algorithm’s input queue.

Bandwidth The bandwidth of the selected link measured in messages per tick. This value
is a double and can be less than one (but should be more than 0). A bandwidth
of 0 disables restricting the links bandwidth.

Speed Change Method The method used for determining the change in the links delay. NONE will
keep the delay constant (no change). UNIFORM will choose a uniformly dis-
tributed pseudo random number each cycle to be added to the delay (this
number can be negative). NORMAL will choose a normally (Gaussian) dis-
tributed pseudo random number each cycle to be added to the delay (this
number can be negative). CONSTANT a constant value will be added to the
delay each cycle (can be negative).

Change Seed The seed used for generating pseudo random changes to the delay.

Change Min The minimum value the link’s delay can fall to. Should be 1 or more.

Change Max The maximum value the link’s delay can rise to. Should be greater than min.

Normal Change Mean Sets the mean of the normal distribution if a normal change method is being
used.

Normal Change STDV Sets the standard deviation of the normal distribution if a normal change
method is being used.

Uniform Change Min Sets the minimum random value chosen if the uniform change method is being
used (can be negative).

Uniform Change Max Sets the maximum random value chosen if the uniform change method is being
used. Can be negative but should be greater than the minimum change.

Constant Change Amount Sets the constant amount the delay changes by if the constant change method
is being used (can be negative).

Failure Rate The probability (in percent) that the link will fail after sending any message.
This value should be between 0 and 100. Messages left in the links queue after
a failure will not be sent.

Packet Loss Rate The probability (in percent) that any given message will be dropped by the
link. This value should be between 0 and 100.

Byte Error Rate The probability (in percent) that any given byte in a message transmitted by
the link will contain an error. If a byte contains an error its value will be
randomly altered to that of a different printable character. This value should
be between 0 and 100.
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Defaults

Table 9: Global Default Settings

Default Setting Description

tickSpeed The minimum time in milliseconds that a tick will last.

loggingLevel The verbosity of the log.

defaultPort The port that will be considered the default port. New pro-
cessor will automatically have the default algorithm assigned
to this port. When the default algorithm is changed, the al-
gorithm listening on this port will also be changed.

defaultSpeedChangeSeed The default speed for the processor and link delay change
methods.

defaultProcSpeed Default delay setting for new processors.

defaultProcSpeedChangeMethod Default delay change method for new processors.

defaultProcSpeedChangeNormMean Default normal mean for new processors.

defaultProcSpeedChangeNormSTDV Default normal standard deviation for new processors.

defaultProcSpeedChangeUniMin Default uniform minimum for new processors.

defaultProcSpeedChangeUniMax Default uniform maximum for new processors.

defaultProcSpeedChangeMin Default minimum change amount for new processors.

defaultProcSpeedChangeMax Default maximum change amount for new processors.

defaultProcSpeedChangeConstant Default constant change amount for new processors.

defaultLinkSpeed Default link delay for new links.

defaultLinkSpeedChangeMethod Default delay change method for new links.

defaultLinkSpeedChangeNormMean Default normal standard deviation for new links.

defaultLinkSpeedChangeNormSTDV Default normal standard deviation for new links.

defaultLinkSpeedChangeUniMin Default uniform minimum for new links.

defaultLinkSpeedChangeUniMax Default uniform maximum for new links.

defaultLinkSpeedChangeMin Default minimum change amount for new links.

defaultLinkSpeedChangeMax Default maximum change amount for new links.

defaultLinkSpeedChangeConstant Default constant change amount for new links.

defaultProcCleanFailRate Default clean failure rate for new processors.

defaultProcByzantineFailRate Default Byzantine failure rate for new processors.

defaultLinkBandwidth Default bandwidth for new links.

defaultLinkFailRate Default failure rate for new links.

defaultLinkLossRate Default packet loss rate for new links.

defaultLinkErrorRate Default byte error rate for new links.
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Appendix C: Example Algorithms

Leader Election

The algorithm in Listing 2 elects a leader in a directional ring network as shown in Figure 12a.
It is assumed that a directional ring network of at least two processors exists and that there is only
one link from each processor. It is required that all processors in the network have numerical IDs.

(a) Example directional ring network. (b) Example output.

Figure 12: Example input and output for leader election algorthim.

Listing 2: Directional Ring Leader Election
1 package dans.algorithm.examples;

2

3 import dans.algorithm.Algorithm;

4 import dans.algorithm.Message;

5

6

7 public class LeaderElection extends Algorithm {

8

9 @Override

10 public Object algorithm () {

11 int id = Integer.parseInt(getID ());

12 String msg = getID ();

13 String status = "UNKOWN";

14 String neighbors [] = getNeighbors ();

15 int leader = -1;

16

17 while(doMainLoop ()) {

18 if (msg 6= null) {

19 send(neighbors [0], msg);

20

21 if(msg.startsWith("END")) {
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22 return leader;

23 }

24 }

25

26 msg = null;

27

28 Message m = receive(false);

29 if(m 6= null) {

30 if(m.message (). startsWith("END")) {

31 leader = Integer.parseInt(m.message (). split(",")[1]);

32

33 if(neighbors [0]. equals(leader+"")) {

34 return leader;

35 } else {

36 msg = m.message ();

37 }

38 } else {

39 int i = m.toInt ();

40 if(i > id) {

41 status = "NOT LEADER";

42 msg = m.message ();

43 } else if(id > i) {

44 msg = null;

45 } else {

46 leader = Integer.parseInt(getID ());

47 status = "LEADER";

48 msg = "END ," + leader;

49 }

50 }

51 }

52

53 display(status );

54 }

55

56 return leader;

57 }

58

59 }
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Bidirectional Leader Election

The algorithm in Listing 3 elects a leader in a bidirectional ring network as shown in Figure
13a. It is assumed that a bidirectional ring network of at least two processors exists and that
each processor has a link to the neighbour on its left and right in the ring. It is further assumed
that the processors do not know which neighbour is their left neighbour and which is their right
neighbour just that they know the IDs of two neighbours. It is required that all processors in the
network have numerical IDs.

(a) Example bidirectional ring network. (b) Example output.

Figure 13: Example input and output for leader bidirectional election algorthim.

Listing 3: Bidirectional Ring Leader Election
1 package dans.algorithm.examples;

2

3 import dans.algorithm.Algorithm;

4 import dans.algorithm.Message;

5

6

7 public class BidirectionalLeaderElection extends Algorithm {

8

9 @Override

10 public Object algorithm () {

11 int id = Integer.parseInt(getID ());

12 String msgA = getID ();

13 String msgB = getID ();

14 String status = "UNKOWN";

15 String neighbors [] = getNeighbors ();

16 int leader = -1;

17

18 while(doMainLoop ()) {

19 if(msgA 6= null) {

20 send(neighbors [0], msgA);

21 }

22

23 if(msgB 6= null) {
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24 send(neighbors [1], msgB);

25 }

26

27 if(leader >= 0) {

28 return leader;

29 }

30

31 msgA = null;

32 msgB = null;

33

34 Message in;

35 while((in = receive ()) 6= null) {

36 String m = in.message ();

37 String from = in.from ();

38 String splited [] = m.split(",");

39

40 if(m.startsWith("END")) {

41 leader = Integer.parseInt(splited [1]);

42

43 if(from.equals(neighbors [0])) {

44 if(leader == Integer.parseInt(neighbors [1])) return leader;

45 msgB = m;

46 } else {

47 if(leader == Integer.parseInt(neighbors [0])) return leader;

48 msgA = m;

49 }

50 } else {

51 int i = in.toInt ();

52

53 if(i > id) {

54 status = "NOT LEADER";

55

56 if(from.equals(neighbors [0])) {

57 msgB = m;

58 } else {

59 msgA = m;

60 }

61 } else if(i == id) {

62 status = "LEADER";

63 leader = id;

64 msgA = "END ," + id;

65 }

66 }

67

68 display(status );

69 }

70 }

71

72 return leader;

73 }

74

75 }
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Broadcast

The algorithm in Listing 4 broadcasts the message “Hello World” from the processor with the
ID “root” to all other processors in the network. It is assumed that all links are bidirectional and
that the network graph is strongly connected. It is required that one and only one processor be
given the ID “root”. An example network and corresponding output are shown in Figure 14.

(a) Example network for broadcasting. (b) Example output.

Figure 14: Example input and output for asynchronous broadcasting algorthim.

Listing 4: Asynchronous Broadcast
1 package dans.algorithm.examples;

2

3 import dans.algorithm.Algorithm;

4 import dans.algorithm.Message;

5 import java.util.ArrayList;

6

7 public class Broadcast extends Algorithm {

8 @Override

9 public Object algorithm () {

10 String parent = null;

11 String message = null;

12 int numNeighbors = getNeighbors (). length;

13 ArrayList <String > acked = new ArrayList <>();

14

15 if(getID (). equalsIgnoreCase("root")) {

16 message = "Hello World";

17 for(String nid : getNeighbors ()) {

18 send(nid , "BROADCAST ," + message );

19 }

20 }

21

22 while(doMainLoop ()) {

23 Message m;

24 while((m = receive ()) 6= null) {
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25 if(m.message (). startsWith("BROADCAST ,")) {

26 if(message == null) {

27 message = m.message (). split(",")[1];

28 parent = m.from ();

29 for(String nid : getNeighbors ()) {

30 if(!nid.equals(parent )) {

31 send(nid , m.message ());

32 }

33 }

34 } else {

35 send(m.from(),"ACK");

36 }

37 } else if(m.message (). equals("ACK")) {

38 acked.add(m.from ());

39 }

40 }

41

42 if(getID (). equalsIgnoreCase("root")) {

43 if(acked.size() >= numNeighbors) {

44 return message;

45 }

46 } else {

47 if(parent 6= null && acked.size() >= numNeighbors - 1) {

48 send(parent , "ACK");

49 return message;

50 }

51 }

52

53 }

54

55 return message;

56 }

57

58 }
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Largest ID

Given a BFS tree of a network, the algorithm in Listing 5 finds the largest ID of any processor
in the network. It is assumed that the BFS tree is represented by laying the network graph out in a
tree with only one directional link leaving each processor (other than the root) as shown in Figure
15a. Only the root processor will find the correct largest ID, any other processor will simply have
the largest ID between its self and its children. It is required that all processor IDs be numerical.

(a) Example tree network for finding largest ID.

(b) Example output.

Figure 15: Example input and output for find largest ID algorthim.
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Listing 5: Find Largest ID
1 package dans.algorithm.examples;

2

3 import dans.algorithm.Algorithm;

4 import dans.algorithm.Message;

5

6

7 public class TreeLargestID extends Algorithm {

8

9 @Override

10 public Object algorithm () {

11 String parents [] = getNeighbors ();

12 String childern [] = getSources ();

13 int id = Integer.parseInt(getID ());

14 String msg = null;

15 int largest = id;

16 int heardfrom = 0;

17

18

19 if(childern.length == 0) {

20 msg = getID ();

21 } else if(parents.length == 0 && childern.length == 0) {

22 return largest;

23 }

24

25 while(doMainLoop ()) {

26 if(msg 6= null) {

27 for(String pid : parents) {

28 send(new Message(pid , msg ));

29 }

30

31 return largest;

32 }

33

34 msg = null;

35

36 Message in;

37 while((in = receive ()) 6= null) {

38 int i = in.toInt ();

39

40 if(i > largest) {

41 largest = i;

42 }

43

44 heardfrom ++;

45 }

46

47 if(heardfrom >= childern.length) {

48 msg = largest + "";

49 }

50 }

51

52 return largest;

53 }

54

55 }
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ID Sum

Given a BFS tree of a network, the algorithm in Listing 6 finds the sum of the processor’s IDs
in the network. It is assumed that the BFS tree is represented by laying the network graph out
in a tree with only one directional link leaving each processor (other than the root) as shown in
Figure 16a. Only the root processor will find the correct sum, any other processor will simply have
the sum of its self and its children. It is required that all processor IDs be numerical.

Listing 6: Find Sum of IDs
1 package dans.algorithm.examples;

2

3 import dans.algorithm.Algorithm;

4 import dans.algorithm.Message;

5

6

7 public class TreeSumID extends Algorithm {

8

9 @Override

10 public Object algorithm () {

11 String parents [] = getNeighbors ();

12 String childern [] = getSources ();

13 int id = Integer.parseInt(getID ());

14 String msg = null;

15 int sum = id;

16 int heardfrom = 0;

17

18

19 if(childern.length == 0) {

20 msg = getID ();

21 } else if(parents.length == 0 && childern.length == 0) {

22 return sum;

23 }

24

25 while(doMainLoop ()) {

26 if(msg 6= null) {

27 for(String pid : parents) {

28 send(new Message(pid , msg ));

29 }

30

31 return sum;

32 }

33

34 msg = null;

35

36 Message in;

37 while((in = receive ()) 6= null) {

38 int i = in.toInt ();

39 sum += i;

40

41 heardfrom ++;

42 }

43

44 if(heardfrom >= childern.length) {

45 msg = sum + "";

46 }

47 }

48

49 return sum;

50 }

51

52 }
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(a) Example tree network for finding the sum of IDs.

(b) Example output.

Figure 16: Example input and output for find sum of IDs algorthim.
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Appendix D: Known Bugs & Limitations

Know Bugs:

1. Adding two or more links between two processors in the same direction will cause a display
bug in which a “loop” will be created in the edge connecting the processors. This has no
effect on the simulation.

2. If two processors share a bidirectional link (a link in both directions) and one of the links
is dragged to a new processor a display issue can occur in which the edges are not drawn
correctly. Moving the processor will fix the issue. This has no effect on the simulation.

3. The print function does not correctly size the network graph to the paper it is printed on
and can be cut off or sized incorrectly.

4. In some cases when in full screen mode the file chooser and other dialogue boxes are not
shown. Algorithms should be loaded before entering fullscreen mode.

5. The properties tab only allows integers to be input for a processor’s ID. It should allow any
unique string. A work around is to set the processor’s ID by double clicking on it in the
network editor window.

6. Some keyboard shortcuts that should be disable are still enabled while running the simulation.

Know Limitations:

1. Only processors can be copied, cut or and pasted.

2. Undo/redo only work on changes to the network graph. They do not undo/redo changes to
settings or properties.

3. The simulation visualization can only display a certain number of messages per tick. If
multiple messages are sent down the same link during the same tick, not all will be displayed.
This has no effect on the actual simulation.

4. If the display command is called multiple times in one tick, only the most recent text will be
displayed. This has no effect on the actual simulation.

5. Panning only works if scroll bars are displayed in the network graph editing window (i.e.
when the windowed is zoomed in on the graph).

6. Having a large number of processors send many messages every tick will cause the GUI to
become unresponsive or even crash.

7. Statistics are combined for all algorithms running on the same processor, there is currently
no way to view per algorithm statistics.

8. No distinction is made in the visualization between messages sent on different ports. If
multiple algorithms on the same processor are running simultaneously and sending messages
down the same link on the same tick, not all messages will be displayed (though they will be
sent, just not shown).

9. Link IDs can not be changed after they are created.
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