
A
Current Research and Open Problems in Attribute-Based Access Control

DANIEL SERVOS, University of Western Ontario
SYLVIA L. OSBORN, University of Western Ontario

Attribute-based access control (ABAC) is a promising alternative to traditional models of access control (i.e. discre-
tionary access control (DAC), mandatory access control (MAC) and role-based access control (RBAC)) that is drawing
attention in both recent academic literature and industry application. However, formalization of a foundational model
of ABAC and large scale adoption is still in its infancy. The relatively recent emergence of ABAC still leaves a number
of problems unexplored. Issues like delegation, administration, auditability, scalability, hierarchical representations,
etc. have been largely ignored or left to future work.

This paper provides a basic introduction to ABAC and a comprehensive review of recent research efforts towards
developing formal models of ABAC. A taxonomy of ABAC research is presented and used to categorize and evalu-
ate surveyed articles. Open problems are identified based on the shortcomings of the reviewed works and potential
solutions discussed.

1. INTRODUCTION
Attribute-Based Access Control (ABAC) is an emerging form of access control that is starting
to garner interest in both recent academic literature and industry application. While there is
currently no single agreed upon model or standardization of ABAC, there are commonly ac-
cepted high level definitions and descriptions of its function. One such high level description is
given in National Institute of Standards and Technology (NIST)’s recent publication, a “Guide
to Attribute Based Access Control (ABAC) Definition and Considerations” [Hu et al. 2013]:

Attribute Based Access Control: An access control method where subject requests
to perform operations on objects are granted or denied based on assigned attributes
of the subject, assigned attributes of the object, environmental conditions, and a set
of policies that are specified in terms of those attributes and conditions.

ABAC, unlike more traditional models of access control, allows for the creation of access
policies based on the existing attributes of the users and objects in the system, rather than
the manual assignment of roles, ownership or security labels by a system administrator. There
are several situations, including cloud computing, where this would be beneficial, removing
the need for manual intervention when authorizing users for certain roles or security lev-
els, simplifying administration in complex systems with a large number of users as well as
creating the possibility of automating access control decisions for remote users from foreign
systems.

While many works have explored the application of ABAC to existing problems and have
attempted to further formalize ABAC, few have sought to provide an in-depth summary of
current efforts or detail the open problems present in the area of ABAC research. This pa-
per seeks to provide such a summary and to identify open problems currently limiting real
world implementation and use of ABAC. We introduce a taxonomy of current areas of ABAC
research, provide a survey and review of the most notable works to date and detail some of
the most pressing open problems.

The remainder of this paper is divided into the following sections: Section 2 gives a brief
background on ABAC and introduces the “Core” ABAC Model, Section 3 describes the method-
ology used for choosing the papers and works surveyed, Section 4 provides a taxonomy of
current areas of ABAC research and Section 5 reviews the most notable ABAC models and
frameworks. Finally, Section 6 identifies and discusses open problems not yet addressed by
present ABAC efforts, while Section 7 provides concluding remarks.

Preprint. Forthcoming article in ACM Computing Surveys (CSUR).



2 ABAC BACKGROUND

2. ABAC BACKGROUND
Rather than basing access control decisions on a user’s identity, like the traditional methods,
ABAC bases access control on the attributes of access control entities. These attributes are
often classified into one of the following categories:

User Attributes. Attributes of the subjects of the system. May include attributes like age,
name, office number, job title, role, security clearance, home address, date hired, trust level
(e.g. how trusted the user is by the system), etc.

Object Attributes. Attributes of the resources of the system. May include attributes about
the meta-data related to the object such as author, date created, last modified, size, file
type, security level, etc., or the contents of the object such as patient name (e.g. for health
records), student number (e.g. for student records), title of chapter 1, etc..

Environmental Attributes. Attributes derived from the current state of the system’s envi-
ronment. For example, current time, day of the week, number of users logged in, free space,
CPU usage, etc.

Connection Attributes. Attributes that only apply to the current session of a user. For exam-
ple, IP address, physical location (e.g. for mobile systems), session start date/time, current
session length, host name, number of access requests made, etc.

Administrative Attributes. Configuration attributes that apply to the whole system and
are either manually set by an administrator or by some automated process. These could
include a threat level (e.g. different policies could be used depending on whether or not
the system was likely to be attacked), minimum trust level (e.g. the minimum amount of
trust required for a user to access the system), maximum session length (e.g. the maximum
allowable length of a session), etc.

Ideally, these attributes are all properties of the elements in the system and do not need to
be manually entered by administration (e.g. many of the attributes about an object come from
it’s meta-data). Access policies can be created using policy languages, limiting access to cer-
tain resources or objects, based on the result of a Boolean statement comparing attributes,
for example “user.age >= 18 OR object.owner == user.id” or “TIME > 8:00AM AND TIME
< 5:00PM”. This allows for flexible enforcement of real world policies, while only requiring
knowledge of some subset of attributes about a given user (as opposed to knowing their iden-
tity and to what roles or permissions they have been manually assigned).

2.1. Core ABAC Model
This section gives a description of a simplified ABAC model based on common elements found
in most ABAC models. While each ABAC model tends to formalize the elements of ABAC in
a slightly different way, the following are the most common elements of an ABAC system and
are present in most models:

Users (U). The set of all users that may access the system. Note that this set may not neces-
sarily be finite as not all users are known at creation time (something that is common in
service oriented architectures and systems involving information sharing across organiza-
tional boundaries).

Objects (O). The set of all objects protected by the system.
Attributes (A). The set of all attributes (given by a unique name) in the system. In some

models, attributes also have a type associated with them or are subdivided into categories
based on the access control entity to which they can be applied.

Permissions (PERM). The set of all possible permissions that may be granted to users. In
some models, permissions consist of object, operation pairs similar to permissions in RBAC,
but this is not necessarily required. In other models permissions are policy and operation
pairs, that grant access to execute the operation on any object that fulfils the policy.

2



2 ABAC BACKGROUND 2.1 Core ABAC Model

Users
(U)

Policies
(P)

Objects
(O)

Permissions
(PERM)

User
Attribute

Assignment
(UAA)

Policy 
Evaluation 

Engine

Attributes
(A) Object

Attribute
Assignment

(OAA)

Policy
Permission
Assignment

(PPA)

GrantsEvaluates

Fig. 1. Core ABAC model. Thin solid arrows denote many-to-many relations, thick solid lines denote relation with
policy engine and doted lines denote information used by the policy engine to evaluate a given policy. Ovals represent
ABAC model elements.

Policies (P). The set of all policies that govern access in the system. Normally these policies
are written in a policy language and in some way related to permissions they grant.

Users and objects are assigned attributes and related through the following relations (shown
in Figure 1):

Users Attribute Assignment (UAA). The assignment of attributes to users. This may take
the form of {a ∈ A, u ∈ U, values} ∈ UAA, that is to say that each element of UAA is a
triple containing an attribute name from the set of attributes (A), a user from the set of
users (U) and a set of values assigned to the given user and attribute pair. For example, if
a user, u1, was assigned an “age” attribute with the value of 28, the entry in UAA would
be {“age”, u1, {29}}. Alternatively, if an user, u2, was assigned a “supervises” attribute that
contains the set of other users they supervise (in this case u1 and u3), the entry in UAA
would be {“supervises”, u2, {u1, u2}}.

Object Attribute Assignment (OAA). The assignment of attributes to objects. This may
take the form of {a ∈ A, o ∈ O, values} ∈ OAA, and works in the same way as UAA but
with objects.

Policy Permission Relation (PPR). The relationship between policies and the permissions
they grant. This may take the form of {p ∈ P, perm ⊆ PERM } ∈ PPR. This assignment
is often formulated differently or not at all in many models depending on how their policy
language works (e.g. the language itself may specify the permission set granted).

Policies in the P set are commonly Boolean statements involving attributes and constants
such as “user.age >= 18” (grants access if the user is 18 or more years of age) or “user.id ==
object.author” (grants access if the user is the author of the file). When an access request is
made by a user it is evaluated against the set of policies (P) given the assigned attributes of
the user making the request and the object being requested. In many models, access requests
are not conducted directly by the user but indirectly through a session that may contain a
subset of the user’s attributes. A comprehensive review of existing ABAC models is given in
Section 5.

3



2.2 Policy Language Standards 2 ABAC BACKGROUND

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

0

5

10

15

20

25

30

Year

N
um

be
r

of
P

ub
lic

at
io

ns

ABAC Publications per Year

(a) ABAC publications per year between January
1st, 1997 and October 20th, 2014.

A
pp

lie
d

W
or

ks
&

Im
pl

em
en

ta
ti

on
s

A
B

A
C

M
od

el
s

Po
lic

y

Sy
st

em
at

iz
at

io
n

of
K

no
w

le
dg

e

A
tt

ri
bu

te
s

M
is

ce
lla

ne
ou

s

0

10

20

30

40

50

60

Category

N
um

be
r

of
P

ub
lic

at
io

ns

ABAC Publications per Category

(b) ABAC publications per category as defined in
Section 4.

Fig. 2. Distribution of ABAC related works matching criteria outlined in Section 3.

2.2. Policy Language Standards
A critical component of ABAC, although not strictly part of the ABAC model, is the access
control policy language used to define policy rules for a system. These languages, while not
models in themselves (as is sometimes erroneously implied), are either generic access control
language standards (such as XACML) or languages created specifically for use with a single
model. eXtensible Access Control Markup Language (XACML) [Godik et al. 2002], a standard
created by the Organization for the Advancement of Structured Information Standards (OA-
SIS), is one of the most frequently referenced works in ABAC literature. XACML is an XML-
based access control policy language that is notable for it’s support of attribute-based policies
and used in multiple access control products. Similarly, Security Assertion Markup Language
(SAML) [Hughes and Maler 2005], also developed by OASIS, provides a standardized markup
language and protocol for exchanging attribute based authorization and authentication infor-
mation between service providers, identity/attribute providers and users.

2.3. Attribute-Based Encryption
Another related but distinct research area from ABAC is attribute-based encryption (ABE),
where objects are encrypted based on attribute-based access policies. ABE mainly consists
of key-policy ABE (KP-ABE) [Goyal et al. 2006] or ciphertext-policy (CP-ABE) [Bethencourt
et al. 2007; Servos et al. 2013] based encryption ciphers. In KP-ABE an object is encrypted
with a set of attributes related to the object which must pass a policy embedded in a user’s
key for decryption to proceed. CP-ABE is the reverse of KP-ABE, using an attribute-based
policy to encrypt an object and having a user’s key consist of a set of attributes relating to that
user. While ABE, much like XACML and SAML, lacks any kind of formal ABAC model and
has rather simplified access policies, it does provide an interesting means of enforcing ABAC
policies outside of the security domain they originate in. There are several examples of ABE
being used for such in recent literature [Hur and Noh 2011; Wang et al. 2010; Servos 2012; Yu
et al. 2010; Bobba et al. 2010], particularly for securing web and cloud based services.

4



3 METHODOLOGY

G
en

er
al

D
om

ai
n

Sp
ec

ifi
c

H
yb

ri
d

M
od

el
s

0

5

10

15

20

25

ABAC Model Subcategory

N
um

be
r

of
P

ub
lic

at
io

ns
ABAC Model Publications per Subcategory

(a) ABAC model Publications per subcategory as de-
fined in Section 4.

P
ri

va
cy

L
an

gu
ag

es

M
in

in
g

&
E

ng
in

ee
ri

ng

E
va

lu
at

io
n

&
Te

st
in

g

T
ra

ns
fo

rm
at

io
ns

&
C

on
ve

rs
io

ns

0

5

10

Subcategory

N
um

be
r

of
P

ub
lic

at
io

ns

Policy Publications per Subcategory

(b) Policy publications per subcategory as defined in
Section 4.

Fig. 3. Distribution of ABAC related works matching criteria outlined in Section 3 (continued from Figure 2).

3. METHODOLOGY
A structured approach was used to locate peer-reviewed literature related to ABAC for the
purposes of this literature survey. Searches for refereed journal papers, conference papers
and dissertations were conducted using the Google Scholar (http://scholar.google.ca) and
DBLP (http://dblp.org/search/) search engines with queries relating to ABAC (e.g. searching
for paper titles containing “attribute-based access control”, “ABAC”, “attribute-based”, etc.).
Articles were then manually reviewed for inclusion/exclusion based on the following criteria:

Inclusion Criteria:
Papers and articles discussing models, implementations, frameworks and architectures

involving ABAC were included. Works dealing with attribute-based policies and policy
languages were also included as well as works describing attribute sharing, storage and
privacy but are not discussed in this paper beyond their inclusion in the taxonomy in Section
4 and statistics given in this document.

Exclusion Criteria:

— Any non-refereed work including patents, standards (XACML and SAML are mentioned
due to their frequent mention in refereed literature, but not included in the statistics in this
document), technical reports, or special publications (The NIST Guide to Attribute Based
Access Control (ABAC) Definition and Considerations is discussed in the introduction of
this document but not included in the statistics).

— Any work that is not in English or is incomprehensible due to language issues (e.g. poorly
translated articles).

— No documents were intentionally excluded based on date of publication.
— Any literature related to, or primarily using attribute-based encryption (ABE) was excluded

as this literature search is intended to focus on models, frameworks, architectures and use
of ABAC as opposed to attribute-base cryptography. While ABE may be a useful tool for
enforcing attribute-based policies in environments where traditional policy enforcement

5



4 TAXONOMY OF CURRENT AREAS OF RESEARCH

is not possible (e.g. in off-line or untrusted environments), it in it’s self does not provide
an underlying model for access control and only comprises one component of a complete
security architecture.

— Any article that was superseded by another work by the same authors is excluded for the
newer work. For example, if an author published the beginnings of an ABAC model in a
conference and then further developed and finalized this model in a later journal paper,
both works are considered to be the same model (both are included in the statistics in
Figure 2 and 3).

The result of this manual search found 199 papers that fall into at least one of the categories
described in Section 4. A summary of the year in which each paper was published is given in
Figure 2a and the category to which it belongs in Figure 2b. From this set of papers, the
most notable and relevant from the category of “ABAC Models” and it’s child categories are
reviewed in section 5 in this paper.

4. TAXONOMY OF CURRENT AREAS OF RESEARCH
The current body of ABAC related research can be classified into a number of hierarchical
categories as described in Table I. This taxonomy of current ABAC research was created af-
ter manually analyzing the peer-reviewed literature found via the methodology described in
Section 3 and grouping works describing similar aspects of ABAC together. Related groups
(e.g. Policy Languages and Policy Mining) were then further grouped under a more general
category (e.g. Policy) that adequately describes all members of the child groups. A diagram of
the taxonomy is presented in Figure 5 in the Appendix of this paper.

6



4 TAXONOMY OF CURRENT AREAS OF RESEARCH

Table I. Description of taxonomy categories in Figure 5.

Category Description

Applied Works & Implementations Literature describing implementations of ABAC systems, frameworks for using
XACML, SAML, etc. or any kind of application of existing ABAC research.r XACML-Based Implementations or applied work using XACML.r SAML Based Implementations or applied work using SAML.r Other Any literature describing implementations or applied work that does not fit
into the above subcategories.

ABAC Models Literature describing access control models that incorporate attributes into ac-
cess control decisions.r Hybrid Models Models that extend or combine existing (non-ABAC) models of access control
(e.g. RBAC) to incorporate attributes.

– PRBAC
Parameterized Role-Based Access Control (PRBAC) models are RBAC models
based around extending RBAC by parametrizing permissions and/or roles as
described in Section 5.2.1.

– Attribute-Based Role Assignment
Models that extend RBAC to add attributes as described in Kuhn et al.’s Dy-
namic Roles strategy (i.e. assigning roles via user attributes). Described in Sec-
tion 5.2.2.

– Attribute-Centric
Models that extend RBAC to add attributes as described in Kuhn et al.’s
Attribute-Centric strategy that would not be classified as “pure” models of
ABAC. Described in Section 5.2.3.

– Role-Centric Models that extend RBAC to add permission filtering based on attributes as
described in Kuhn et al.’s Role-Centric strategy. Described in Section 5.2.4.

– Unified Models Access control models that combine ABAC with with alternative access control
models (i.e. non-traditional models) as described in Section 5.2.5.r Pure ABAC Models ABAC models that are not extensions to existing models of access control but
new attribute-based models.

– General ABAC models that are system independent in that they are general enough to
be applied to any access control use.

– Domain Specific ABAC models that are designed for a particular domain or use (e.g. for protect-
ing web services).

* Cloud Computing Models targeting the domain of cloud computing.
* Real-time Systems Models targeting the domain of real-time systems.

* Collaborative Environments Models targeting the domain of collaborative work and educational environ-
ments.

* Mobile Environments
Models targeting the domain of mobile environments, including both systems
that track mobile physical objects and mobile computing systems (e.g. cell
phones).

* Grid Computing Models targeting the domain of grid computing.

* Web Services Models targeting the domain of web services, including service oriented archi-
tectures.

* Other Any domain specific model that does not fit in one of the above child categories.

Policy
Literature describing the mining for or evaluation, testing, and development
of attribute-based policies and languages. Also includes works attempting to
preserve the privacy of policies or otherwise hide details of policies from an
adversary.rConfidentiality Works aimed at preserving the privacy of attribute-based policies or otherwise
hide details of policies from an adversary.r Languages Literature describing or extending attribute-based policy languages.r Mining & Engineering Research aimed at the automatic mining of attribute-based policies or other-
wise engineering attribute-based policies.r Evaluation & Testing
Literature describing the testing and evaluation of attribute-based policies. In-
cludes both the implementation of tools to automate the testing of policies and
efforts to prove the security/safety of policies (formally or otherwise).

Systematization of Knowledge Literature reviews and systematization of knowledge in the area of ABAC.

Attributes Works relating to sharing, storing, validating, securing or ensuring the privacy
of attributes used in ABAC.r Confidentiality Efforts to ensure the privacy of attributes. That is protecting unwanted entities
from determining the value of potentially sensitive attributes.r Storage & Sharing (Certificates)
Efforts to enable the sharing or storage of attributes. Includes frameworks,
protocols and data structures (e.g. attribute certificates) for securely sharing
attributes between access control entities.

7



5 MODELS AND FRAMEWORKS

5. MODELS AND FRAMEWORKS
5.1. Pure ABAC Models
Recent efforts have aimed to take the first steps towards creating foundational models of
“pure” ABAC (i.e. ABAC models that are not simply extensions to existing models, e.g. RBAC,
but new attribute-based models that can be seen as a generalization of traditional models).
A summary of the most relevant attempts at creating such a model are given in Tables III
and IV in the Appendix, with a more in-depth review of each being given later in this section.
These efforts can be subdivided into two categories (as described in Section 4 and Figure 5),
“general” and “domain specific”. “Domain specific” models aim to provide ABAC for a specific
use cases such as cloud computing, web services, etc. while “general” models aim to provide
an ABAC solution that may be applied to any situation where access control is desired.

5.1.1. General Models.

A Logic-Based Framework for Attribute-Based Access Control. Wang et al. put forth
one of the first “pure” and “general” ABAC models (published in 2004) in the form of a logic-
based framework based on logic programming where policies are specified as “stratified con-
straint flounder-free logic programs that admit primitive recursion” [Wang et al. 2004] and
attributes and operations are modelled as sets in computable set theory [Dovier et al. 2000].
Methods of optimizing the runtime performance of evaluating an ABAC-based policy are also
demonstrated, which involve transforming a given ABAC policy into a semantically equiva-
lent but runtime and overhead reduced policy when possible. While Wang et al.’s framework
introduces hierarchical attributes (something lacking from other models), it is largely focused
on the representation, consistency and performance of attribute-based policies and their eval-
uation. Several critical components are absent, including lacking object attributes (the only
attributes considered are user attributes) and omitting formalization of ABAC aspects outside
of policies and their evaluation (e.g. only access control on services/operations is considered).

Attribute-Based Access Matrix Model. Zhang et al.’s 2005 paper proposes a unique model
of ABAC based around an attribute enhanced access matrix, called the “attribute-based access
matrix” (ABAM) model [Zhang et al. 2005]. ABAM defines an access matrix in which each row
is represented by a pair consisting of a subject and it’s set of attributes (Si, ATTS(Si)) and
each column by a pair consisting of an object and it’s set of attributes (Oi, ATTS(Oi)). Each
cell ([Si, Oi]) then corresponds to the set of access rights the subject (Si) may exercise over
the object (Oi) assuming certain policies are fulfilled. Operations (or “commands” as they are
called in ABAM) may be executed by a given subject over a given object only if the matching
access rights required by the operation are found in the access matrix and the subject and
object’s attributes fulfill the set of policies on the operation.

In addition to the formalization of ABAM, Zhang et al. also provide a safety analysis to
prove the decidability of ABAM for a case where the set of attributes is finite, and the at-
tribute relationships allow no cycles. While ABAM’s unique use of an access matrix allows for
a more auditable ABAC system than other models (basic checks on which users may access a
certain object may be accomplished with a simple matrix lookup rather than evaluating poli-
cies on a large set of attributes and subjects), it omits details on how policies are administered,
composed, or evaluated. A policy language is shown in examples but never formalized fully.
Similarly, it is stated that ABAM is comprehensive enough to encompass the traditional ac-
cess control models; however, this is not demonstrated and it is left unclear how ABAM might
encompass MAC or hierarchical RBAC. Lastly, ABAM lacks connection, environment and hi-
erarchical attributes as well as constraints to enforce separation of duty or enable delegation.

Secure Collaborations with Attribute-Based Access Control. A more recent work
(2013) by Rubio-Medrano et al. [Rubio-Medrano et al. 2013] introduces the notion of secu-

8



5 MODELS AND FRAMEWORKS 5.1 Pure ABAC Models

rity tokens into an abstract model of ABAC that defines the relevant core components and
attributes required for a minimal reference model. Unlike other rule-based ABAC models
that make access control decisions on the basis of evaluating policies given the current state
of various attributes, Rubio-Medrano et al.’s model maps attributes of access control enti-
ties (subjects, objects, etc.) to security tokens by traversing an administrator defined “token-
provisioning graph” (TP-Graph). The TP-Graph is a directed, possibly cyclic, graph whose
vertices represent sets of related attributes or security tokens (referred to as attribute or se-
curity token families) and its edges represent “token-provisioning functions” (TP-Functions)
that map attribute or security token families to a different security token family based on de-
fined criteria the attribute or token values must meet. By allowing system administrators to
define TP-Functions and relating security tokens to the permissions (object, operation pairs)
they grant, it enables access control decisions that are claimed to be more auditable and open
to security analysis using techniques based on graph theory.

While Rubio-Medrano et al.’s model gives a novel take on ABAC, the added auditability
and graph-based security analysis come at the cost of increased administrative complexity
and overhead. In theory the TP-Graphs should allow for the development of security analysis
techniques based on graph theory but this seems to be largely left to future works. Addition-
ally, the ABAC model itself is largely informal, leaving most concepts well described but not
defined formally. It is left unclear how TP-Functions and the TP-Graph may be created by an
administrator or in what form they may take (a policy language is hinted at when directions
for future work are discussed). Similarly, no precise description or algorithm is given for how
the TP-Graph is traversed or how cycles may be handled.

ABACα. Another recent (2012) work by Jin et al. aims “to develop a formal ABAC model
that is just sufficiently expressive to capture DAC, MAC and RBAC” [Jin et al. 2012a]. This
model, ABACα, provides formalizations of the basic ABAC elements (users, objects, policies,
etc.), their relations and constraints that allow emulation of the traditional models. A partial
policy and constraint language, called “Common Policy Language (CPL)”, based on set theory
notation and Boolean logic is defined and example configurations are given for DAC, MAC,
and RBAC-style access control in ABACα. Additionally, a limited functional specification in-
cluding a bare minimum of administrative functions is specified (although details on what
authorization conditions may be required for administrative functions are not given).

CPL is used for both policy specification and configuring constraints on ABACα to limit
possible attribute assignments and set a valid range and type of attribute values. Example 1
shows an authorization policy in CPL for enforcing RBAC style access control. In this case S
is the set of all subjects, O is the set of all objects, srole is a subject attribute that contains the
subjects roles, rrole is an object attribute that contains the set of roles that grant permission
to read the object and wrole is an object attribute that contains the set of roles that grant
permission to write to the object. The authorization policy states that a subject can only read
the object if they have a role in the objects rrole attribute value set and can only write to the
object if they have a role in the objects wrole attribute value set.

Example 1. Simple (non-hierarchical) RBAC authorization policy:
Authorizationread(s : S, o : O) ≡ ∃r ∈ srole(s) ∈ rrole(o)
Authorizationwrite(s : S, o : O) ≡ ∃r ∈ srole(s) ∈ wrole(o)

While this work provides a sufficient basis on which new foundational models of ABAC may
feasibly be built, it (intentionally) lacks several necessary components for the real world. Fea-
tures such as attribute and object hierarchies, environment and connection attributes, delega-
tion and separation of duties are omitted and left to future models built upon ABACα. Finally,
the given policy language, while adequate for modelling traditional access control systems, is
insufficient for real world application. No specifics are given on how CPL might handle mul-

9



5.1 Pure ABAC Models 5 MODELS AND FRAMEWORKS

tiple policy composition or conflicting policies and the heavy use of set theory notation in the
language (as opposed to traditional Boolean statements) makes CPL’s practicality over an ex-
isting policy language such as XACML questionable (creating XACML profiles for ABACα is
left to future works).

The Policy Machine. Ferraiolo et al. have developed a novel approach to access control
that is highly attribute-based in the form of the Policy Machine (PM) [Ferraiolo et al. 2011;
Ferraiolo et al. 2015]. The PM is an architecture and access control framework to support the
specification and enforcement of attribute-based access control policies that aims to redefine
and generalize access control to provide a unified mechanism under which a wide range of
policies may be enforced. Unlike other approaches that define attributes as name value pairs,
the PM represents user attributes as many-to-many relations between users and capabilities
(operation object pairs that grant the ability to perform the given operation on the given
object). Similarly, object attributes are defined as many-to-many relations between sets of
objects and sets of access entries (user operation pairs that state that the given user may
perform the given operation). Attributes are hierarchical, allowing attributes to be assigned
to other attributes so long as the chain of assignments remains acyclic. If two user attributes
ua1 and ua2 exist such that ua1 is assigned to ua2, the set of users assigned to ua1 are contained
in ua2 and the capabilities granted from ua1 are those obtained through the chain of attribute
assignments (e.g. all users assigned to ua1 in this case would gain the capabilities granted
from both ua1 and ua2). Assignments between object attributes work in a similar manner.
If two object attributes oa1 and oa2 exist such that oa1 is assigned to oa2, the set of objects
assigned to oa1 are contained in oa2 and the objects of oa1 have the access entries assigned to
oa2 (in addition to those assigned to oa1).

Policies are specified using policy classes, chains of attribute assignments terminating with
a policy class as shown in the example policy given in Figure 4. In this example, an RBAC style
policy class is shown that governs access to materials and grades for a university course. The
user attribute Instructor grants the capability to write to objects assigned the Course Material
attribute (in this case o1 and o2), however, as the Instructor attribute is assigned the Teaching
Assistant attribute it also grants the capabilities of the Teaching Assistant attribute (and all
other user attributes on the path to the policy class in Figure 4). The Teaching Assistant
attribute grants the capability to read all objects assigned with the CS2034 attribute. This
includes any objects assigned attributes that are in turn assigned the CS2034 attribute (i.e.
the Course Material and Grades object attributes) in the assignment chain. In this example
the resulting permissions allow teaching assistants (i.e. u2) to read all of the CS2034 objects
(o1, o2, and o3) but only write to the grade objects (o3). Instructors (i.e. u3) have all permissions
of teaching assistants in addition to being able to write to Course Material objects (o1 and o2).
Finally, Students (i.e. u1) are limited to only reading Course Material objects (o1 and o2).

Ferraiolo et al. show that the PM is sufficiently flexible to enforce DAC, MAC, RBAC and
Chinese Wall [Brewer and Nash 1989] style security policies and provide further means to
constrain policies with prohibitions, restrictions and obligations. An administration model
is also presented, as well as details on a number of architectural components necessary for
implementation. The PM specification described in [Ferraiolo et al. 2015] has served as the
basis for the ANSI/INCITS Next Generation Access Control standardization effort [INCITS
2013; 2015].

Hierarchical Group and Attribute-Based Access Control. Lastly and most recently
(2014), the work by Servos and Osborn [Servos and Osborn 2014] attempts to create a formal
general model of ABAC that provides a group based hierarchical representation of object and
user attributes. In this model, entitled Hierarchical Group and Attribute-Based Access Con-
trol (HGABAC), attributes are assigned both directly to access control entities and indirectly

10



5 MODELS AND FRAMEWORKS 5.1 Pure ABAC Models

u1 u2 o2o1 o3u3

Students Instructor

Teaching 
Assistant

Users

Course
Material

Grades

CS2034

CS2034 Policy

{w}

{r}

{w}

{r}

Fig. 4. Example Policy Machine policy class. Solid arrows represent attribute assignments, while dashed lines rep-
resent capabilities of the shown user attributes.

assigned through user and object attribute groups. Attribute groups help simplify adminis-
tration of ABAC systems by allowing administrators to create user or object groups whose
membership indirectly assigns sets of attribute/value pairs to its members. These groups are
hierarchical and inherit attribute/value pairs from their parent groups allowing for more flex-
ible policy representation when combined with the three-valued logic based policy language
proposed in the work.

The HGABAC policy language represents policies as C style boolean statements that may
evaluate to TRUE, FALSE or UNDEFINED. A resulting evaluation of TRUE implies that
access should be granted, FALSE that it should be denied and UNDEFINED if the policy
can not be properly evaluated at the current time (equivalent to a result of FALSE for access
control decision purposes). Policies are associated with a set of operations that they grant if
satisfied. Example 2 presents a number of example policies that are possible in HGABAC.

Example 2. Possible policies supported by HGABAC:

— P1 = (user.age ≥ 18 AND object.title = ‘‘Adult Only Book", read) Any user
with an age of 18 or older can read the book with the title “Adult Only Book”.

— P2 = (user.id = object.author, write) A user can write to any object they are an
author of.

— P3 = (user.role IN {‘‘doctor", ‘‘intern", ‘‘staff"} AND user.id !=
object.patient, read) A user can read a medical record if they have the role
of doctor, intern or staff but only if they are not listed as a patient in that record.

— P4 = (object.type = ‘‘program" AND object.required certifications SUBSET
user.certifications, run) A user can run a program if they have the required
certifications listed in the programs required certifications attribute.

Servos and Osborn show that their policy language and attribute groups are capable of em-
ulating MAC, DAC and hierarchical RBAC (though not separation of duties) and that their
attribute groups result in less complex (in terms of the number of assignments and relations
between access control entities) representations than standard (non-hierarchical) ABAC mod-
els under a number of hypothetical use cases.

5.1.2. Domain Specific Models.
While a handful of recent ABAC related works have sought to create “general” models, the
more popular trend in modern access control literature has been the creation and formal-
ization of “domain specific” ABAC models. A large focus has been given to the domains of

11



5.1 Pure ABAC Models 5 MODELS AND FRAMEWORKS

cloud computing [Buehrer and Wang 2012], grid computing [Lang et al. 2009; 2006; Lang
et al. 2010], web services [Yuan and Tong 2005; Shen and Hong 2006; Xia and Liu 2009;
Shen 2009], and related areas including mobile computing [Covington and Sastry ] and cross-
domain service-oriented architecture [Dan et al. 2012].

Cloud Computing. Buehrer and Wang propose an ABAC model based on class algebra,
entitled CA-ABAC, intended to provide access control between federated educational clouds
[Buehrer and Wang 2012]. CA-ABAC makes use of the non-probabilistic version of class alge-
bra implemented by the Cadabia knowledge base [Buehrer et al. 2001] as a basis for its ABAC
policy language. Example policies from [Buehrer and Wang 2012] are given in Examples 3 and
4.

Example 3. Only students that have signed the contract/consent form (the form named
okJim55) may read or execute course material owned by the teacher named Jim.

new Policy[n1] {
agents: ‘‘ENV.user in @School[A;B]
.student{@Form[okJim55] in singedForms}" ∧∧Query

rights: @Rights[read,execute],
objects: ‘‘@Thing{owner = @Teacher[Jim]}

}

Example 4. Uses the environments time attribute to block students from reading the an-
swers to homework assignment 5 until after the due data.

new BlockPolicy[n5] {
agents: ‘‘ENV.user in @Student," ∧∧Query
rights: @Rights[read],
objects: ‘‘@Homework[assignment5]
{dueDate > ENV.date}.answer" ∧∧Query

}

Buehrer and Wang outline a very informal description of their model which mostly describes
policy use and a hypothetical system architecture. While the prospect of using class algebra as
a policy language may have potential, CA-ABAC lacks formalization or details on many of the
key features of an ABAC system. No description is given of what constitutes an attribute in
the model or their relation to users, objects or the environment. Basing the policy language on
Cadabia queries may lead to problems for real world use as the Cadabia open source project
is no longer maintained.

Real-time Systems. Burmester et al. [Burmester et al. 2013] put forward the T-ABAC
(real-Time Attribute-Based Access Control) model, that adds real-time attributes to the con-
cept of rule-based ABAC to support highly dynamic real-time applications. Real-time at-
tributes are defined as attributes whose value depends on time and is a member of an ordered
set of availability labels which determines the “priority” of a subject’s request, the “congestion”
of a resource or the “criticality” of the environment. Burmester et al. also provide a packet for-
warding protocol that takes the priority of access requests into account and demonstrate the
versatility of T-ABAC by discussing two possible applications, a substation automation sys-
tem, and a medical CPS. While the T-ABAC model does a good job of dealing with issues
unique to real-time systems, it omits several core ABAC model components. No information
is given about how policies are represented, evaluated or apply to the model and only the con-
cept of real-time attributes is developed with regard to ABAC. As such, T-ABAC presents a
sufficient basis for extending existing ABAC models to support real-time applications, but is
missing necessary components to be a standalone model.

12



5 MODELS AND FRAMEWORKS 5.1 Pure ABAC Models

Collaborative Environments. Collaborative working and educational environments en-
able cooperative work, research and learning through shared application or service resources.
Collaborative applications and services include but are not limited to E-mail, wikis, instant
messaging, group blogs, version control systems, courseware, and software to support shared
document, workspace, task and work flow management. As these applications have unique
access control requirements, they have attracted a notable amount of attention in the access
control literature including a number of papers focusing on applying ABAC policies to col-
laborative systems. Such works include Smari et al.’s ongoing research project and multiple
publications supporting ABAC for collaboration environments [Zhu and Smari 2008; Smari
et al. 2009; Smari et al. 2014] and Liang et al.’s multiple-policy supported ABAC architecture
for large-scale collaboration systems (MPABAC) [Liang et al. 2012].

Smari et al. present an ABAC model aimed at collaboration environments [Zhu and Smari
2008] that incorporates trust and privacy into access control policies. They extend this model
over a number of works [Smari et al. 2009; Smari et al. 2014] to fully formalize their notion of
trust and privacy and illustrate their model with an implementation and detailed case study
involving a multi-organizational collaborative crisis management system. Their model con-
sists of a three-valued (“allow”, “deny”, and “NA”) rule-based policy evaluation on subject and
object attributes that integrates trust and privacy through special mutable trust and purpose
attributes. Trust is considered to be “the degree that a subject will perform as expected in a
certain given context” and is quantified as a real number between 0 and 1 and assigned as
the value of a subject’s trust level attribute. As a user performs requests upon the system,
their previous behaviour is assessed and used to determine if their future behaviour deviates
or conforms to what is expected (effecting the user’s trust level). In addition to this dynamic
notion of trust, a subject’s trust level is also dependent on other subject attributes including
the recommendation from others and the level of collaboration between organization of a re-
quester and that of a resource. This trust level can then be included in access control policies
to limit or expand a user’s access to system resources based not only on traditional access
policies but also their evaluated trust level. The concept of privacy is enforced by assigning a
set of well-defined purposes to subjects and objects as an attribute which represents either for
what purposes a subject may access an object or for what purposes an object may be accessed
respectively. Access to a specific object is allowed only if the purpose of the subject for access-
ing the object matches a purpose allowed by the object. While Smari et al.’s model successfully
introduces trust and privacy to ABAC, it omits details on policy evaluation or a formalized pol-
icy language. Example policies are shown but no explanation is given for how the operations
may work with the three-valued logic used by the model.

Liang et al. offer a model and architecture for Multiple-Policy Attribute-Based Access Con-
trol (MPABAC) [Liang et al. 2012] that addresses the access control issues inherent in large-
scale device collaboration systems (i.e. mainly the large number of heterogeneous devices).
Unlike other ABAC models, MPABAC models resources as devices (device attributes rather
than object attributes, etc.) and focuses on limiting access to networked devices (e.g. seismo-
graphs, orchestrated lights, etc.) based on multiple policies possibly originating from differ-
ent domains but evaluated locally. The described architecture and implementation detail how
XACML may be used to communicate access control information between different domains
and enforce the MPABAC model. As MPABAC largely focuses on architecture and XACML
use, the ABAC model itself omits details on how policies are evaluated or combined. Details
on how attributes are represented (e.g. if they are sets, collections of values, or primitive data
types, etc.) are similarly omitted and the notion of policies having a priority level is introduced
but not fully formalized in terms of the MPABAC model.

Mobile Environments. Several efforts have advocated models of ABAC that are contex-
tually aware of a user or resource’s physical environment. Covington and Sastry’s CABAC

13



5.1 Pure ABAC Models 5 MODELS AND FRAMEWORKS

(Contextual Attribute-Based Access Control) [Covington and Sastry ] investigates using the
dynamic properties commonly available in a mobile environment (e.g. a user’s current phys-
ical location) as attributes to support ABAC for mobile applications. Transaction attributes
that are mutated or created based on a user’s transactions with a service provider (e.g. a user
may have an attribute that holds the total amount of money spent at a certain shop) are also
supported as a special case of contextual user attribute. These attributes allow for access poli-
cies to be based around past transactions with a user. For example, a restaurant may have
a policy that grants access to their WiFi connection to customers that have made a purchase
in the last 24 hours. A custom authorization policy specification language consisting of con-
stant symbols (e.g. object references), variable symbols (e.g. location and time), and operation
symbols (e.g. +, -, /, *, AND, OR, <, >, etc.) is described but not formalized or demonstrated.

A similar work by Kerschbaum details an access control model for mobile physical objects
[Kerschbaum 2010] that aims to apply access control to physical mobile resources embedded
with RFID tags. Kerschbaum’s model applies attribute-based visibility policies to supply chain
information based on the contextual location of physical objects as they transverse multi-
company supply chains. This is accomplished by extending Yuan and Tong’s ABAC model for
web services [Yuan and Tong 2005] (discussed later in this section) to include upstream and
downstream visibility as an attribute for each pairing of subject and object to allow policies
to be created based on an object’s trajectory relative to a subject (i.e. whether a subject is
upstream or downstream of an object’s current location in the supply chain). Policy rules are
specified using a Boolean function of the subject and resources attributes as shown in Example
5. In this example a subject, s, may access the information pertaining to a resource, r, if the
attributes “downstream” or “upstream” are in the attribute set produced by the pairing of s
and r, i.e. ATTR(s, r). Such attribute sets are continuously updated based on the subject and
resource’s current physical location.

Example 5. Resource visibility policy:
access(s, r) ← ‘‘downstream" ∈ ATTR(s, r) ∨

‘‘upstream" ∈ ATTR(s, r)

A method for encoding such visibility policies in XACML is also described. XACML environ-
ment attributes are used in place of assigning attributes to pairings of subjects and resources
(as XACML does not support direct assignment of attributes to subject resource pairs).

Grid Computing. Grid computing has been another common target of domain specific
ABAC models as it presents unique access control requirements stemming from the dis-
tributed nature of grid computing, where resource providers and users may be in independent
security domains. Lang et al.’s Attribute Based Multipolicy Access Control (ABMAC) [Lang
et al. 2006; 2009] presents a model and Globus Toolkit release 4 (GT4) based authorization
framework for applying ABAC to grid computing. In addition to user, object and environment
attributes, ABMAC supports service and action attributes that allow attributes to be applied
to grid services or a grid action respectively. Policies differ from most rule-based ABAC mod-
els in that each policy is encapsulated and uses its own definitions and decision-making algo-
rithms, allowing for independent evaluation without changing a policy’s description. A simi-
lar but more informal work, Grid ABAC [Lang et al. 2010], also uses GT4 to implement and
demonstrate a grid based ABAC model that supports action attributes and uses XACML as
a policy language. Grid ABAC, unlike ABMAC, largely focuses on being a grid authorization
architecture and as such provides a more minimalistic ABAC model.

Web Services. By far the largest area of research in domain specific ABAC models is to-
wards attribute and policy-based access control for web services. Identity-less access control
such as ABAC provides a potential solution to furthering automated web service discovery

14



5 MODELS AND FRAMEWORKS 5.1 Pure ABAC Models

and use by allowing access control decisions to be made without prior knowledge of the sub-
ject or their relation to the service provider. Of the many ABAC models targeting web services
[Yuan and Tong 2005; Shen and Hong 2006; Dan et al. 2012; Xia and Liu 2009; Shen 2009;
Zhang et al. 2014], most notable is the model by Yuan and Tong (ABAC for Web Services), upon
which several other ABAC models [Kerschbaum 2010; Xia and Liu 2009] are based. Yuan and
Tong describe ABAC in terms of authorization architecture and policy engineering and give
an informal comparison between ABAC and traditional role-based models. Policy rules are
defined as a Boolean function comparing the attributes of the subject making the request, the
resource potentially being access and the system’s environment. If the function evaluates as
true, access is granted to the subject, otherwise access is denied.

Two example policy rules from [Yuan and Tong 2005] are shown in Example 6. Rule 1 (R1)
allows a subject, s, to access the ApprovePurchase web service resource, r, if they have a Role
attribute with a value of “Manager”. Rule 2 (R2) allows any user access to a resource they
own. That is, if their user ID is equal to the value of the ResourceOwner attribute for the
given resource, r.

Example 6.
R1: can access(s, r, e) ←

(Role(s) = ‘‘Manager") ∧
(Name(r) = ‘‘ApprovePurchase")

R2: can access(s, r, e) ←
(UserID(s) = ResourceOwner(r))

While Yuan and Tong’s model is limited, only giving an overview of subject, object, and
environment attributes and their relation to policies, it was an earlier effort which served
as the basis for more formalized future works. In addition to the model, an authorization
architecture is introduced that uses XACML to securely communicate attributes, policies, and
access control decisions between a number of actors.

Shen and Hong propose WS-ABAC [Shen and Hong 2006], a more extensive but still rela-
tively simplistic ABAC model designed for web services accompanied by an XACML-based au-
thorization architecture. In the WS-ABAC model policies are based on a straightforward tuple
language that is mapped to XACML when used in their authorization architecture. Attribute
constraints are expressed as a series of attribute conditions, <Attribtue Name> <Operation>
<Value> statements, combined with logical AND (represented as ∩) or OR (represented as ∪)
operators. Valid attribute condition operations are limited to >, <, ≥, ≤, =, 6=. In Example 7,
constraint C1 limits access to a web service to a manager who is accessing the service between
the hours of 9:00 AM and 5:00 PM from the office. Constraint C2 limits access to clerk when
the system load is low or to a manager at any time or system load.

Example 7. Example WS-ABAC Attribute Constraints
C1: Identity=‘‘manager" ∩ Time≥9:00 ∩ Time≤17:00 ∩ Location=‘‘office"
C2: Identity=‘‘clerk" ∩ System load=‘‘low" ∪ Identity=‘‘manager"

WS-ABAC policies are defined as the triple <S, srv, C>, where S is the set of subjects to
which the policy pertains, srv is the service the policy grants access to and C is the attribute
constraint. Access to a service is only granted if (1) there exists a policy triple containing the
requested service, (2) the user, U, making the request is a member of S (U ∈ S) and (3) the
attribute constraint, C, evaluates to true. As with Yuan and Tong’s ABAC for Web Services,
this work presents a minimalistic model and mostly focuses on an architecture that uses
XACML and attribute-based policies to provide authentication for web services (as opposed to
a complete and/or foundational model of ABAC).

15



5.1 Pure ABAC Models 5 MODELS AND FRAMEWORKS

A number of later publications have followed in the same suit, providing minimally suf-
ficient models with accompanying XACML-based architectures targeting web services or
service-oriented architectures (SOA). Dan et al. [Dan et al. 2012] create and implement an
XACML architecture for cross-domain SOAs. Xia and Liu [Xia and Liu 2009] study using
action and attribute-based models for web services and develop a limited ABAC model and
XACML architecture that extends the work of Yuan and Tong. Shen [Shen 2009] presents
SABAC, an informal semantic-aware ABAC model for web services that makes use of present
standards, including XACML. Finally, Zhang et al. [Zhang et al. 2014] describe a largely in-
formal ABAC security model for service-oriented computing that adds the notion of trust as
well as offering an authorization architecture for web services based on combining existing
works (mainly SAML and XACML). However, few details are provided on their ABAC or trust
model, as more attention is given to the authorization architecture.

Digital Libraries. An earlier work (2002) by Adam, et al. [Adam et al. 2002] identified the
need for attributes to deal with the challenging requirements of providing access control for
digital libraries. Digital libraries are information systems that facilitate the storage, retrieval
and acquisition of knowledge between creators, consumers and librarians on a global scale.
Adam, et al. suggest a novel access control system for protecting the Global Legal Information
Network (GLIN), a digital library created by the Law Library of Congress for making laws
and legal decisions accessible to citizens, legislators, government and private sector officials1.
Their model grants privileges based on user credentials (sets of typed attributes relating to
the same topic or structure, e.g. an employee credential may contain an age, address and
salary attribute) and object concepts (conceptual hierarchies extracted from the content of an
object using a document management mechanism built into GLIN [Holowczak 1997]). Both
credentials and concepts are hierarchical. Credentials types (declarations of what attributes
are contained in a credential, their type and possible values) are organized into a hierarchy
such that a credential type inherits all attributes of the credential type proceeding it in the
hierarchy. For example, if an employee credential type specified that it contains the attributes
age, address and salary and a international employee credential type specified that it contains
the attributes nationality and visa, it would also gain the attributes age, address and salary
if international employee was a child of employee in the credential type hierarchy.

A simple credential constraint specification language is introduced that allows for the evalu-
ation of user’s attribute values (or their assignment to a specific credential) using rudimentary
operations (=, 6=, <, >, ≤, ≥, ⊂, ⊆, ⊃, ⊇, 6⊂, 6⊆, 6⊃, 6⊇, ∈, /∈). Constraint expressions take the
form of X.a OP v where X is a variable representing any user in the system, a is an attribute
name, OP is an operation and v is a value (for example X.age > 18 would specify all users
with an age over 18). Constraint expressions can also simply be a credential type to specify
all users assigned to a given credential (including children of that credential in the credential
type hierarchy). For example, the expression employee(X) would specify all users who are em-
ployees. These constraint expressions are used in Access Authorizations to create the access
policies of the system. Access Authorizations are tuples consisting of a credential specifica-
tion (one or more credential expressions joined with AND or OR symbols), entity specification
(denotes the concepts, objects or parts of objects the authorization refers), privilege (a valid
operation on an object) and sign (whether the authorization is positive, grants the privilege,
or negative, forbids it). Example Access Authorizations are shown in Example 8.

Example 8. Some Possible Access Authorizations:

— A1 = (employee(X), 2016 Income Report, view-all, +) Allows all employees to
view the “2016 Income Report”.

1http://www.glinf.org

16



5 MODELS AND FRAMEWORKS 5.2 Hybrid Models

— A2 = (international employee(X) ∧ X.nationality = Canadian, 2016 Income
Report.Canada part, update, -) Forbids international employees from Canada
from updating the Canada part of the “2016 Income Report”.

— A3 = (X.age ≥ 18, Book of Guns ∧ Book of Drugs, view-all, +) Allows any user
with an age of 18 or over to view the “Book of Guns” and the “Book of Drugs”.

Adam, et al. also provide details about a supporting system architecture and protocol, dis-
cuss an implementation of their model and explain how administrative operations are per-
formed. Later work by the same authors [Ferrari et al. 2002] introduces an authorization
system for digital libraries that utilizes this access control and authorization model.

5.2. Hybrid Models
Hybrid models of ABAC aim to combine attributes into existing models of access control or
to extend the traditional models with identityless or policy-based access control concepts.
This includes both early attempts at adding parameterized roles and permissions to RBAC
as well as more modern efforts to unify ABAC with alternative access control models such as
relationship-based access control (ReBAC) and behaviour-based access control (BBAC). Kuhn
et al. [Kuhn et al. 2010] describe a number of hypothetical strategies for adding attributes to
RBAC:

Dynamic Roles. Roles are assigned dynamically based on the user’s and environment’s at-
tributes, providing identityless access control for RBAC-based systems. Most dynamic role-
based hybrid models lack object attributes or a means to dynamically assign permissions to
roles, and as such lack the flexibility of ABAC to limit access based on the content of objects
(e.g. only allow users to view medical records in which they are the patient). This leads to
what has been described as an “explosion” [Jin et al. 2012b] of role-permission assignments
or the creation of a large number of private roles.

Attribute-Centric. Roles are considered to be just another attribute of a user. No role-
permission relation is created and permissions are assigned through policies. If no special
consideration for roles is provided in an Attribute-Centric model this could be seen simply
as “pure” ABAC modelling RBAC. As this can be seen as equivalent to “pure” ABAC in
most cases, it is deprived of the advantages of RBAC (simple administration, auditability,
straightforward separation of duties, etc.).

Role-Centric. The maximum permission set available in a given session is constrained by
attribute-based rules. Constraint rules are used only to reduce permissions available to the
user and never expand them (differentiating it from role parameterization). Few details are
given about how this strategy may be implemented or if it is different enough from existing
models of parameterized RBAC to warrant it’s own strategy. To date only one published
work is known to specifically utilize this strategy [Jin et al. 2012b].

In addition to the strategies described by Kuhn et al., role parameterization [Ge and Osborn
2004; Giuri and Iglio 1997; Abdallah and Khayat 2005] can be seen as a viable option for
ABAC-RBAC hybridization. In Parameterized RBAC, permissions (and in some cases roles)
are parameterized with conditions that must be met before access is granted to a subject.
Often these conditions involve attributes of the object being accessed but may also include
attributes of the user and environment (e.g. time).

We categorize the ABAC Hybrids reviewed in this section into the following subcategories:

Parameterized Role-Based Access Control. RBAC models based around extending RBAC
by parametrizing permissions and/or roles as described in Section 5.2.1.

17



5.2 Hybrid Models 5 MODELS AND FRAMEWORKS

Attribute-Based Role Assignment. Models that extend RBAC to add attributes as de-
scribed in Kuhn et al.’s Dynamic Roles strategy (i.e. assigning roles via user attributes).
These models are reviewed in Section 5.2.2.

Attribute-Centric. Models that extend RBAC to add attributes as described in Kuhn et al.’s
Attribute-Centric strategy that would not be classified as “pure” models of ABAC. These
models are reviewed in Section 5.2.3.

Role-Centric. Models that extend RBAC to add permission filtering based on attributes as
described in Kuhn et al.’s Role-Centric strategy. To date only Jin et al.’s RABAC [Jin et al.
2012b] is known to exist in this category. This model is reviewed in Section 5.2.4.

Unified Models of Access Control. Access control models that combine ABAC with with al-
ternative access control models (i.e. non-traditional models) as described in Section 5.2.5.

Table VI in the Appendix summarizes and compares the most notable of these hybrid models
using similar criteria to the comparison between “pure” ABAC models found in Appendix
Tables III and IV (criteria defined in Table II).

5.2.1. Parameterized Role-Based Access Control. Parameterized Role-Based Access Control
(sometimes abbreviated PRBAC [Abdallah and Khayat 2005]) can be seen as an early first
step towards ABAC. In PRBAC, permissions normally modelled as object, access mode pairs in
RBAC are parameterized with a condition that must be met before the permission is granted
to a subject. In Giuri and Iglio’s Role Template model [Giuri and Iglio 1997] RBAC permissions
are extended with a logical expression referred to as the privilege restriction.

This restriction is evaluated against both the object on which access is requested and the
returned value of predefined functions. One example (given in the paper) would be if permis-
sions included “(delete, PatientRecord, PatientRecord.State = ‘discharged’)” then the delete op-
eration would be permitted on any patient record that is in a “discharged” state, similarly the
permission“(delete, PatientRecord, today() in [Mon..Fri])” would permit the delete operation
only on week days (Monday to Friday). Additionally, role templates are defined that extend
the concept of roles to “encapsulate and compose parameterized privileges”. These templates
act as a function that takes a set of values (related to the object the role grants access to) and
returns a set of parameterized permissions that make up a role. For example, the role tem-
plate (also taken from the paper) given in Example 9 would produce the template instance
given in Example 10 if the values prj = “PRJ1” and sal = 1000 are used.

Example 9. Example role template.
R<prj, sal>= role(
(select, Employee, Employee.project = prj),
(update, Employee, Employee.project = prj ^ Employee.salary <sal))

Example 10. Resulting role instance for values prk = “PRJ1” and sal = 1000.
R,<‘‘PRJ1’’, 1000>= role(
(select, Employee, Employee.project = ‘‘PRJ1’’),
(update, Employee, Employee.project = ‘‘PRJ1’’ ^ Employee.salary <1000))

While the role templates and parameterized permissions described by Giuri and Iglio may
provide some advantages over classical RBAC, they do not consider the attributes of the sub-
ject, limiting their privilege restrictions to only attributes of objects. This makes policies such
as “each student can access their own transcript” difficult to implement without assigning a
unique template instance to each student.

The work by Ge and Osborn [Ge and Osborn 2004] towards parameterized roles to sup-
port XML databases provides a PRBAC solution that includes both the attributes of subjects
and the contents of objects. Ge and Osborn extend the role graph model [Nyanchama and Os-

18



5 MODELS AND FRAMEWORKS 5.2 Hybrid Models

born 1999] to parameterize privileges with XPath-like [Clark et al. 1999] logical expressions
that contain variables determined at run time based on attributes defined in a user’s session.
In an example given in the paper, the parameterized privilege pair “(//Student[@StudID
= param1]/GeneralInfo, update)” would grant access to update a student’s record general
info section if the user’s student id attribute matched the student id in the record. Roles
are adapted to support parameterized privileges and the implications of parameterization on
inheritance in the role graph is considered. While this extension supports object attributes
(limited to the contents of the object) it is only applicable to the narrow domain of restricting
access to XML-based databases as opposed to a generic access control solution.

A number of similar PRBAC works have attempted to add logical expression based policies
to RBAC permissions including Abdallah and Khayat’s PFRBAC [Abdallah and Khayat 2005]
(an extension of FRBAC [Khayat and Abdallah 2003]) and Lupu and Sloman’s model [Lupu
and Sloman 1997] for reconciling Role Based Management (RBM) and RBAC. Although these
and other PRBAC works add aspects of policy- and attribute-based access control to RBAC,
they fail to provide the identityless nature of modern ABAC systems. Users (or subjects) still
require assignment to roles (in most cases done manually), requiring pre-existing knowledge
of both the user and their place in the organization. While sufficient for conventional access
control scenarios, identity-based access control like PRBAC fails to provide the flexibility re-
quired for emerging computing paradigms including service-oriented architectures (e.g. web
services) or dynamic environments as commonly found in cloud computing.

5.2.2. Attribute-Based Role Assignment. Models based on Attribute-Based Role Assignment or
“Dynamic Roles” as defined by Kuhn et al. [Kuhn et al. 2010] allocate roles to subjects based
on the attributes of the subject and environment at run time. In most cases, administrator
created policies are defined via policy languages that relate attributes to constant values (e.g.
checking if a user’s age is greater than 18) and role assignment is performed when a sub-
ject first creates a session with the system based on the outcome of these policies, the user’s
attributes (e.g. age) and the current state of the environment (e.g. current day of the week).
These roles may be limited to a set of possible roles assigned to the user (identity-based) or
made totally dependent on attributes with no pre-existing knowledge of the user (identityless).

Al-Kahtani and Sandhu introduce identityless access control concepts into RBAC in their
Rule-Based RBAC (RB-RBAC) model [Al-Kahtani and Sandhu 2002] by automating the as-
signment of roles at run time based on a user’s attributes. In RB-RBAC, rules defined in a cus-
tom policy language determine the set of roles a user is assigned based on attributes provided
with the user’s credentials. Policy rules take the form of Attribute Expression → Roles state-
ments where Attribute Expression is a Boolean statement involving attribute names/values
and Roles is one or more roles granted if the user’s attributes satisfy the attribute expres-
sion2. Example 11 demonstrates three rules that are possible in their policy language. Rule 1
(R1) grants the Guest role to any user between the hours of 9 AM and 5 PM. In rule 2 (R2),
users from Japan or New Zealand who are also 20 years or older are granted the Adult role.
Finally, in rule 3 (R3), users from Canada, the USA or Mexico who are 18 years or older are
granted both the Adult role as well as the North American role.

Example 11.
R1: (Time IN (900 .. 1700)) → Guest
R2: (Age ≥ 20) AND (Country IN {Japan, New Zealand}) → Adult
R3: (Age ≥ 18) AND (Country IN {Canada, USA, Mexico})

→ Adult AND North American

2The grammar of the policy language presented in [Al-Kahtani and Sandhu 2002] allows for more flexible policy rules
that include more complex constrains, restrictions and role combinations. However, the paper leaves most of these to
future work/extensions.

19



5.2 Hybrid Models 5 MODELS AND FRAMEWORKS

Seniority levels are used to denote an attribute’s value dominating another value in cases
where the order of values is not clear (e.g. strings or sets rather than numerical values),
allowing operations such as less than (<) or greater than (>) to be performed on values of
any type. The versatility of the model is demonstrated through a number of real life cases;
however, the lack of object attributes limits the flexibility of possible policies compared to
those possible in most “pure” ABAC models.

A number of approaches [Jin and Fang-chun 2006; Cirio et al. 2007; Cruz et al. 2009; 2008;
He et al. 2011] have attempted to use Semantic Web Technologies, such as Web Ontology
Language (OWL) [McGuinness et al. 2004], Semantic Web Rule Language (SWRL) [Horrocks
et al. 2004] and SPARQL Protocol and RDF Query Language (SPARQL) [PrudHommeaux
et al. 2008], to both model hierarchical RBAC and extend it with attribute-based dynamic role
assignment. Cirio et al. [Cirio et al. 2007] propose both a hybrid RBAC-ABAC model and a sup-
porting framework based on OWL Description Logic (OWL-DL) in which attributes are used to
classify subjects into access control roles. While all basic RBAC elements are formalized into a
OWL-DL ontology and details for expanding the expressiveness of OWL-DL with SPARQL are
given, Cirio et al. do not fully model the attribute-based aspects of their ontology. Details on
how attributes are defined, assigned, related to users or how they may be combined with their
framework are not provided. Cruz et al. [Cruz et al. 2009; 2008] describe a “Constraint and
Attribute Based Security Framework for Dynamic Role Assignment” focused partly on using
a user’s physical location for role assignment. In this approach, predefined roles can have both
a previously known sets of users as well as users dynamically assigned based on the content
of their attributes and policy set on role assignment (referred to simply as constraints in the
work). Rather than employing a policy language like most ABAC works, constraints are de-
fined as attribute name, constraint pairs (e.g. <Age, ≥ 18>) that are assigned directly to roles
to limit their assignment. Semantics for role inheritance and constraint dominance are given
in addition to a description of an OWL-DL ontology based prototype. Finally, both He et al.
[He et al. 2011] and Jin & Fang-chun [Jin and Fang-chun 2006] have also produced seman-
tic web-based RBAC models that add elements of ABAC. Both works represent and provide a
means to reason about hierarchical RBAC in description logic, He et al. using SWRL [Horrocks
et al. 2004] and Jin & Fang-chun using ALC(D) [Baader and Hanschke 1991]. Both also use
attribute-based policies for role assignment. The main difference between these models is the
limitations put on attributes and support for separation of duties; He et al. limit attributes
to user credentials that have been verified by a trusted third party (a process described in
their accompanying architecture) and support classical RBAC separation of duties, while Jin
& Fang-chun allow temporal attributes in addition to the attributes of subjects but lack any
notation of separation of duty style constraints.

Shafiq et al. propose an agent-based framework [Shafiq et al. 2005] for attribute-enhanced
RBAC in distributed environments that extends the Generalized Temporal Role-Based Access
Control (GTRBAC) model [Joshi et al. 2005]. In this framework, users are both directly as-
signed roles before hand and allowed to request additional roles at run time based on their
self declared attributes and the amount of trust a service provider has in those attributes (de-
termined partly based on additional credentials submitted by the user). In addition to allowing
temporal constraints on activating roles (e.g. only allowing the role employee to be activated
between 9AM and 5PM), the framework also allows constraints to be placed on the duration a
role can be enabled in a given time interval, defined either for a single session or a total dura-
tion of all sessions in which the role is active. The X-GTRBAC [Bhatti et al. 2005] XML-based
policy language is extended to support SAML-based assertions and attribute-based autho-
rizations used in the framework. While this work presents a novel extension to GTRBAC to
support hybrid ABAC in cases where a single trusted attribute authority may not be avail-

20



5 MODELS AND FRAMEWORKS 5.2 Hybrid Models

able, like RB-RBAC it is also omits support for object attributes, limiting the expressiveness
of possible policies.

A number of comparable models aim to provide analogous support for attribute-based role
assignment for web services and service-oriented environments, including the work done by
Zhu et al. [Zhu et al. 2008] and Wei et al. [Wei et al. 2010]. Zhu et al. put forward their “gen-
eral attribute based role-based access control” (GARBAC) model aimed at web services while
Wei et al. introduce their “Attribute and Role Based Access Control” (ARBAC) model aimed
at service-oriented environments. Both models provide hybrid ABAC for service-oriented ar-
chitectures and support a similar set of features including object attributes and hierarchical
roles. While these models add object attributes (something lacking in other models in this
subcategory) they lack formal definitions of the policy language being used or the semantics
behind it. It is also left unclear how object attributes might be used in role assignment poli-
cies in practice if assignment takes place before requests on specific objects are performed (in
GARBAC a constraint on role-permission assignment is hinted at but only shown partly in an
example case study).

5.2.3. Attribute-Centric. Models based on the “Attribute-Centric” strategy, as defined by Kuhn
et al. [Kuhn et al. 2010], have the characteristic of incorporating attributes into RBAC model
roles as just another attribute of the user and not necessary a separate access control entity
onto which permissions are assigned. Instead, permissions are assigned based on evaluat-
ing policies relating attributes of users, the environment, objects, etc., with each other and
constant values. If no special consideration for roles is given, this is equivalent to the “pure”
ABAC models described in Section 5.1 which can be seen as a more generalized access con-
trol model than RBAC (as it is possible to emulate RBAC configurations in ABAC policies). If
special consideration for roles is provided, such as using role-based separation of duties, the
model is considered to be an ABAC-RBAC hybrid and described in this section.

The most notable Attribute-Centric work that does not fall into the category of “pure” ABAC
is Huang et al.’s “a framework integrating attribute-based policies into role-based access con-
trol” [Huang et al. 2012] that models RBAC on two levels. A front end (or “aboveground”) level
presents itself as a traditional RBAC model extended only with environmental attributes (ap-
plied to both user-role and role-permission assignments) and a back end (or “underground”)
level emulates the simplistic RBAC front end using attribute-based policies. This depart-
mentalizing allows routine access control operations and auditing/review to be performed on
the simpler RBAC front end, while still allowing the more complex administration and fine
grained attribute-based policies to be created in the ABAC back end.

Underground level policies are divided into two categories: Role-permission assignment
policies, that determine assignment of permissions to roles and user-role assignment poli-
cies that determine the assignment of users to roles. Both types of policies are specified using
first order logic (FOL) expressions that follow structures shown below:

Role-Permission Assignment Policy Structure User-Role Assignment Policy Structure
rule id { rule id {
target { target {
role pattern; user pattern;
permission pattern { role pattern;
operator pattern; environment pattern;
object pattern; }

} condition;
environment pattern; decision.

} }
condition;
decision.

}

21



5.2 Hybrid Models 5 MODELS AND FRAMEWORKS

Where patterns are FOL expressions that define a set of environmental states, set of roles,
set of users, set of object, etc. as appropriate and comprise the target of the rule (the access
control entities to which this rule applies). The condition is a FOL expression that defines
conditions that must be met for the role or permission to be assigned and the decision defines
the exact role or permissions assignment that will be made. Example 12 shows a user-role
assignment policy that grants any role of type “employee” to any user (as no user pattern
is given) located in London. The granted roles are only valid in environments matching the
environmental pattern specified. In this case, only on weekdays and while the system mode is
set to “normal”.

Example 12.
rule: {
target: {
role pattern(r): r.type = "employee";
environment pattern(e): {

Time = "Weekday"
and Mode = "Normal" }

}
condition: {
u.location = "London";
}
decision: add (u,r,e) in URAe.
}

While this dual level model simplifies administrating a large scale ABAC system, this ben-
efit is only maintained if policies of the back end ABAC model conform to those reviewable
in a standard RBAC framework. Back end policies that grant roles based on non-identity re-
lated attributes (e.g. location, time, etc.) rather than limit activation of or put constraints on
previously assigned roles can easily lead to issues when attempting to determine the set of
users who have access to a given role or permission (as is the case with most ABAC systems).
This forces the role/policy engineer to choose between creating an identityless access control
system or one which is easily auditable.

5.2.4. Role-Centric. Jin et al.’s role-centric attribute-based access control (RABAC) [Jin et al.
2012b] extends the NIST RBAC model [Ferraiolo et al. 2001] to create the first attempt at a
formal Role-Centric RBAC-ABAC hybrid model. RABAC follows Kuhn et al.’s approach [Kuhn
et al. 2010] of reducing the number of permissions available to a subject in a traditional RBAC
session based upon the current value of attributes (in this case only user and object attributes).
Permission filtering policies, defined in a custom Common Policy Language (CPL) [Jin et al.
2012a] based language, are used to reduce the maximum permission set in a given session
by checking each permission against all applicable filtering policies. The applicability of each
policy is determined by a secondary “condition” policy assigned to each filtering policy that
determines if it should be applied to a given permission based on the attributes of the object.
This method is used to constrain permissions without significantly modifying the NIST RBAC
model (only the set of permissions available to a subject in a given session are effected) en-
abling other concepts such as separation of duties or the role hierarchy from the NIST model
to be directly applied to RABAC without modification.

While this work does provide a first attempt at a role-centric model, it is unclear if it poses
a significant benefit over preexisting models of PRBAC. Both offer an identity-based solution
that constrains role-permission assignment, the main difference being that PRBAC changes
the process of the role-permission relation such that permission assignment is determined at
run-time while RABAC keeps the relation unchanged and filters permissions out during ses-

22



5 MODELS AND FRAMEWORKS 5.2 Hybrid Models

sion creation. Jin et al. argue that this difference enables RABAC to make use of the NIST
RBAC administrative model while PRBAC models would require new and more complex ad-
ministration models.

5.2.5. Unified Models of Access Control. We define Unified Models of Access Control as any mod-
els of access control that attempt to combine two or more non-traditional models of access
control into a single unified model. For the purposes of this section, only models that include
ABAC are considered. Cheng et al. attempt to combine relationship-based access control (Re-
BAC) with ABAC in their UURACA model [Cheng et al. 2014] by extending the user-to-user
relationship-based access control (UURAC) [Cheng et al. 2012] model. ReBAC-based models
provide access control for Social Network Systems (SNS) based on a subject’s relations with
other users and entities in the social network. For example, a user may create an access pol-
icy to limit access to viewing their profile to only friends or friends of friends (i.e. limiting
access to the profile to users with a user-to-user relationship depth of 1 or 2 from the pro-
file owner on the social graph). Cheng et al.’s UURACA adds attributes to both the nodes
(users and resources) and edges (relationships) of the social graph, representing attributes of
users, resources and relations (type, weight, trust, etc.). A custom policy language (based on
the language from UURAC) enables users to restrict access to owned resources based on a
combination of attributes and relations. The following example policies (taken from [Cheng
et al. 2014]) restrict access to a profile based on users who share at least five common friends
who are students (P1), restrict access to a profile to friends in common with “Bob” (P2) and
restrict access to a photo to users who are within 3 hops of the owner on the social graph with
a minimum trust value of 0.5 at each hop (P3).

Example 13.
P1: 〈profile access, (ua, ((ff, 2) : ∃[+1,−1], occupation(u) = “student”, count ≥ 5))〉
P2: 〈profile access, (ua, ((ff, 2) : ∃[+1, 1],name(u) = “Bob”, ))〉
P3: 〈read ,Photo1 , (ua, ((f∗, 3) : ∀[+1, 1], trust(r) ≥ 0.5, ))〉

While UURACA successfully adds attributes to UURAC, there are some possible privacy
concerns resulting from allowing end users to define their own attribute-based policies (some-
thing that is not unique to UURACA but any ABAC model that allows users to create policies
to protect their own resources/objects). For example, if a user, Alice, has a private profile on a
SNS and an attacker, Eve, wishes to obtain some private information from that profile that is
also an attribute describing Alice (e.g. location, age, gender, occupation, etc.). Eve could gener-
ate a large number of resources that would be appealing to Alice to view (e.g. a link to a picture
with the text “Is this you in this picture?”) and protect each resource with a policy that con-
tains a guess at the value of one of Alice’s attributes (e.g. (name(u) = “Alice”) ∧ (age(u) = 18),
(name(u) = “Alice”)∧ (age(u) = 19), (name(u) = “Alice”)∧ (age(u) = 20), etc.). Alice would only
be able to access the resource with the correct value and Eve would be able to determine this
value by checking which resource is accessed. For example, if the set of resources were posts
containing a link, each to a different image on Eve’s website. Eve could determine the value
of the attribute by matching the accessed image to the policy used to protect the accessed re-
source. This sort of attack could also be conducted more efficiently by using ranges of values
for the attributes Eve is guessing at (e.g. (name(u) = “Alice”)∧ ((age(u) > 10)∨ (age(u) < 20)))
to narrow down the value with fewer resources generated.

Che et al.’s “Behaviours and Attributes Based Access Control” (BABAC) [Che et al. 2010]
attempts to unify behaviour-based access control (BBAC) and ABAC to provide a novel access
control solution for network virtualization. In BABAC, user behaviours (a single or sequence
of actions performed by a user) are quantized and divided into three categories; Time-Lasting
Behaviour (a single persistent action that last for a fixed amount of time), Instant Behaviour
(a single action that happens instantly and has no associated length of time), and Multi-

23



5.2 Hybrid Models 5 MODELS AND FRAMEWORKS

Action Behaviour (A combination or sequence of Time-Lasting and Instant behaviours). These
behaviours are then used in combination with user and environment attributes to define ac-
cess control policies that restrain access to resources both before and after permissions are
assigned (e.g. a user’s access to a resource could be revoked if they spend too much time per-
forming a single action). The BABAC revocation policy in Example 14 (from [Che et al. 2010])
revokes read access to the resource “FinancialPlan” if the user views the resource for more
than 60 minutes, attempts to perform an illegal copy operation or more than 3 users are try-
ing to access this resources at one time. The time-lasting behaviours (TB), instant behaviours
(IB), and multi-action behaviours (MB) that will be used in the policy are specified before the
revoke policy expression.

Example 14.
Resource = "FinancialPlan"
Action = "Read"
TB = "TotalViewTime"
IB = "PerformIllegalCopy"
MB = "TotalSeveringUser"
Revoke(U,R,A) ⇐ { TotalViewTime(U) ≥ 60 minutes
∨ PerformIllegalCopy(U) = true
∨ TotalSeveringUser ≥ 3 users }

To support access requests between independent virtual networks, user attributes are divided
into three types; Global Attributes (user attributes obtained from a virtual network indepen-
dent global attribute authority trusted by all virtual networks), Intra-domain Attributes (user
attributes defined locally by an individual virtual network that access is currently being re-
quested upon), and Trust-domain Attributes (user attributes imported from remote virtual
networks that are trusted by the current network upon which access is currently being re-
quested). Example 15 shows how these attributes may be used in a BABAC policy to grant
access to a resource (the same financial plan as in Example 14). In this case, a user is allowed
read access if they have a global security level of 5 or greater, have a job title of “junior-
manager” in the local network or have a job title of “senior-manager” in a trusted network and
are not located in department C of a trusted network.

Example 15.
Resource = "FinancialPlan"
Action = "Read"
GAttr = "SecureLevel"
IAttr = "JobTitle", "Location"
TAttr = "JobTitle", "Location"
Allow(U,R,A) ⇐ { SecureLevel(U) ≥ 5
∧ (JobTitle(U) ≥ IAttr(junior-manager) ∨ JobTitle(U) ≥ TAttr(senior-manager))
∧ Location(U) 6= TAttr(dept.C) }

One last notable effort, is Han et al.’s [Han et al. 2009] work towards a united access control
model that combines ABAC, RBAC and task-based authentication control (TBAC). In Han et
al.’s united model, TBAC is extended with attribute-based constraints (limited to user and
object attributes) in addition to hierarchical role-based assignment of task permissions. Per-
missions are divided into Executing (permission to execute a task), Supervising (permission
to initiate, approve, dispense, or administrate task execution) and Invoking (permission to
initiate task request and acquire the result) permissions which are granted by roles. ABAC
is used largely for negotiating identityless role assignment with external users and functions
similarly to attribute-based role assignment.

24



6 OPEN PROBLEMS

While unified models provide interesting new takes on existing non-traditional models, they
are often limited in their applicability to real world access control scenarios, instead targeting
niche access control scenarios or domains. UURACA’s application is limited to SNS, BABAC
to network virtualization and Han et al.’s united model to systems in collaborative commerce.
Additionally, combining models often leads to increased complexity such as is the case in Han
et al.’s united model where administrators are required to deal with attributes, policies, role
assignments, role hierarchies, workflows and tasks for both internal and external users; all in
a single access control system. While this provides a large number of fine grained configura-
tion points, it’s questionable how manageable or auditable real world implementations would
be, especially in systems with a large number of access control entities.

6. OPEN PROBLEMS
As ABAC research is still largely in it’s infancy, the list of open problems related to ABAC
systems and implementations is extensive. The majority of these problems stem from the
increased complexity attribute and policy-based access control introduces for the sake of in-
creasing the flexibility and generality of access control policies. While hybrid ABAC models
and frameworks aim to remedy these issues by extending proven traditional models, this is
often done at the cost of flexibility or removing the identityless nature of ABAC. This section
outlines the most common problems identified and discussed in the recent literature (namely
the works reviewed in Section 5) relevant to ABAC and to a lesser extent, policy-based access
control in general.

6.1. Foundational Models
One frequently discussed issue [Jin et al. 2012a; Hu et al. 2013; Servos and Osborn 2014] is the
lack of an agreed upon reference and/or foundational model of ABAC. While a large number of
ABAC models have been published, they have predominantly been domain specific and limited
to a particular use case (e.g. web services) or hybrid models that lack the versatility of “pure”
models. Of the generalized models discussed in Section 5.1, only three [Jin et al. 2012a; Servos
and Osborn 2014; Zhang et al. 2005] are both formal and complete models, none of which have
garnered mainstream acceptance as “the standard” model of ABAC.

To date, the most frequent works cited as “the model of ABAC” have been XACML, Wang
et al.’s logic-based framework for ABAC [Wang et al. 2004] and Yuan & Tong’s ABAC for web
services [Yuan and Tong 2005]. However, these works are problematic as foundational models
for a number of reasons. As XACML is simply an access control policy language, it lacks any
kind of formal model of ABAC despite it’s support for attributes, making it at best only one
component of a larger model. Wang et al.’s logic-based framework, provides a start towards
a generic foundational model but mostly concentrates on modelling policies and their evalua-
tion and can not be seen as a complete model of ABAC. Yuan & Tong’s ABAC model for web
services, while an early effort and the basis for several other models [Kerschbaum 2010; Xia
and Liu 2009], is simplistic and specific to a limited domain. Perhaps the most promising, but
yet to be completed or published, work is the purported effort at NIST towards a formalized
family of ABAC models. During the NIST Attribute Based Access Control Workshop held on
July 17, 2013, limited details on the “Framework of ABAC models” were presented by David
Ferraiolo that defined four families of ABAC models; ABACrule, ABACrule−hier, ABACrel and
ABACrel−history. Unfortunately, to date, few details and no formal definitions are available for
these models (the only source being an unrefereed set of presentation slides [Ferraiolo 2013]).

Beyond model adoption or creation by a standards organization, a possible solution may lie
in the suggestion of Barker [Barker 2009] for access control research to avoid “developing the
next 700 particular instances of access control models” and instead focus on unifying meta-
models. A meta-model of ABAC, or perhaps all policy-based access control in general, could

25



6.2 Emulating and Representing Traditional Models 6 OPEN PROBLEMS

provide a unified model for describing and reasoning about ABAC without necessitating the
need for creation of new models for each small extension of the concept.

6.2. Emulating and Representing Traditional Models
It has been claimed that ABAC is a more general model of access control as it is capable of em-
ulating the traditional models [Chadwick et al. 2003; Jin et al. 2012a; Lang et al. 2009; Servos
and Osborn 2014; Park and Sandhu 2004]; however, as of now this has only been demon-
strated in the literature in a largely informal and shallow manner. The work by Jin et al. [Jin
et al. 2012a] has presented the most formal effort to date, demonstrating how ABACα can be
constrained to model DAC, MAC and hierarchical RBAC. However, only a single possible rep-
resentation is given for each classical model (a number of which assume a partially ordered
set may be used as an attribute’s value) and the separation of duty constraints of RBAC are
not modelled. A deeper exportation and evaluation of the different possible methods of repre-
sentation are required to both develop best practices for aiding in the transition to ABAC (e.g.
converting existing traditional systems to ABAC systems) and formally proving that ABAC
can model all possible DAC, MAC and RBAC-based policies.

6.3. Hierarchical ABAC
In hierarchical RBAC, the role hierarchy allows for roles to be related in a way that more
closely resembles that of actual organizations. This allows for more simplistic administration,
both in terms of role engineering and reviewability of existing role-based policies. Most “pure”
models of ABAC; however, lack this type of inheritance and expressiveness. While a role can
be easily modelled as a single attribute of a subject, this simplistic representation is unable
to emulate the hierarchical nature of RBAC without allowing for complex data types in an
attribute’s value (as is done in Jin et al. [Jin et al. 2012a] ABACα) or unmaintainably com-
plex policies. A more simplistic means of providing hierarchical administration is required for
“pure” ABAC to be competitive with RBAC and hybrid models.

A possible solution may be found in “attribute user groups” [Servos and Osborn 2014], hi-
erarchical groups that inherit sets of attributes from their parent groups and allocate these
attributes to their members (similar to how roles in hierarchical RBAC could be seen as allo-
cating permissions to the role’s membership). This technique could also be applied to objects
and other access control entities onto which attributes may be assigned. Another approach
is to allow attributes to have inheritance relations directly with other attributes, such that a
child attribute supersedes the parent attribute in policies. For example, if both the attributes
“cs faculty” and “cs graduate student” are children of the attribute “cs department”, being
assigned “cs faculty” or “cs graduate student” would fulfil a policy requiring a user to be as-
signed the “cs department” attribute. This is similar to the attribute hierarchies described in
Wang et al.’s ABAC framework [Wang et al. 2004] as well as other models, but potentially
limits the usefulness of ABAC as attributes no longer have values (instead each attribute hi-
erarchy could be seen as a single attribute with members being the possible values for the
attribute).

6.4. Auditability
An important aspect of access control for both legal and security reasons is the ability to
easily determine the set of users who have access to a given resource or the set of resources a
given user may have access to (sometimes referred to as a “before the fact audit”). In RBAC,
this is relatively straightforward, normally just requiring the system to calculate the union
of the set of effective privileges from each role the user is assigned. However, in ABAC this
is considerably more complicated [Hu et al. 2013]. As ABAC is an identityless access control
system and users may not be known before access control request are made, it is often not

26



6 OPEN PROBLEMS 6.5 Separation of Duties

possible to compute the set of users that may have access to a given resource. Even in cases
where the identities of all users and their assigned attributes are known, it can still be difficult
to efficiently calculate the resulting set of permissions for a given user as all objects would
need to be checked against all relevant policies.

To date, this has largely been addressed with hybrid ABAC models that use attributes sim-
ply for role assignment [Al-Kahtani and Sandhu 2002; Shafiq et al. 2005; Jin and Fang-chun
2006; Cirio et al. 2007; Cruz et al. 2009; Zhu et al. 2008; Wei et al. 2010] (allowing admin-
istrators to at least know what roles grant what permissions) or to put constraints on the
permissions assigned to a role [Ferraiolo et al. 2001; Ge and Osborn 2004; Giuri and Iglio
1997; Abdallah and Khayat 2005; Lupu and Sloman 1997] (favouring an identity-based ap-
proach). As these methods use hybrid strategies, they come with the disadvantages of the
hybrid models they use (i.e. namely loss of flexibility and identityless access control). ABAM
[Zhang et al. 2005] is one of the few “pure” ABAC models that provides some level of auditabil-
ity by restricting subjects to only possibly being assigned permissions in a predefined access
matrix; however, it accomplishes this at the cost of being identityless and requires users to be
known and properly labelled in the access matrix.

It is important that more complete and efficient methods of auditing “pure” ABAC systems
be developed to enable administrators to demonstrate compliance with specific regulations
and directives that require before the fact auditing. Without this ability, ABAC will likely be
unusable in cases where legal or industry regulations prohibit systems that rely solely on
after the fact auditing techniques.

6.5. Separation of Duties
Separation of duties(SoD) is the notion that multiple persons should be required to complete
a sensitive task to limit the potential for both error and fraud. In RBAC, this is supported
through static SoD, where subjects are prohibited from being assigned conflicting roles, and
dynamic SoD, where subjects are prohibited from activating conflicting roles in the same ses-
sion [Ferraiolo et al. 2001]. However, in ABAC, application of this concept has been largely
unexplored and left to future work. It is still unclear to what or how SoD type constraints
might be applied to ABAC models and if additional constraints beyond those possible through
policy languages are required.

Alipour & Sabbari [Alipour and Sabbari 2012] attempt to solve this problem by introducing
“can’t perform” rules that restrict a subject from performing certain actions (operations) on
specified resources. This solution is problematic; however, in that it requires knowledge of both
the subject and their possible conflicts of interest beforehand. Bijon et al. propose an attribute-
based constraint specification language (ABCL) [Bijon et al. 2013] that allows constraints to
be placed on both attributes and attribute assignments. They demonstrate how this language
may be used to specify SoD style constraints and validate its usefulness through a number
of use cases. While this work may be part of a viable solution, it merely defines a language
for representing constraints and lacks a formal model or framework for their use. Finally,
a common solution is to use the SoD constraints from RBAC in hybrid ABAC models that
include roles [Jin et al. 2012b; Shafiq et al. 2005; Cirio et al. 2007; Wei et al. 2010; Han et al.
2009]. However, as with other uses of hybrid ABAC, it comes at the cost of flexibility or the
identityless nature of ABAC.

6.6. Delegation
Delegation is a frequently desired access control feature that allows one subject to temporarily
delegate their access rights to a more junior (in terms of access rights) subject. In RBAC
research [Barka and Sandhu 2000a; 2000b] this is often accomplished by enabling delegation
of assigned roles under certain predefined constraints and revocation conditions, but has also

27



6.7 Attribute Storage and Sharing 6 OPEN PROBLEMS

been expressed in terms of partial permission delegation [Wang and Osborn 2011; Zhang et al.
2003; Wang and Osborn 2006], in which a delegator creates and delegates a temporary role
composed of a subset of their delegatable permissions. While delegation has been partially
addressed in terms of attribute-based encryption [Waters 2011; Servos et al. 2013], few efforts
to date have been made to apply a delegation model to ABAC.

Such a model of delegation could be applied to both delegation of attributes between users
and delegation of resulting permissions granted by policies. Delegation of attributes could
be partially supported through the use of X. 509 attribute certificates [Farrell and Housley
2002; Farrell et al. 2010]; however, this requires potentially lengthy certificate chains to be
transmitted as part of a user’s attribute-based credentials and could also lead to privacy con-
cerns when sensitive attributes are involved. Moreover, attribute certificates are largely an
implementation detail rather than a formal part of a delegation model. Dynamic delegation
of permissions is more complex as attribute values (particularly for environment attributes
like time) may frequently change resulting in different permission assignments. Allowing del-
egation of granted permissions may require constant evaluation of relevant policies to ensure
permissions are revoked when the delegator’s access is removed due to a change in attributes,
an approach that is both complicated and inefficient.

6.7. Attribute Storage and Sharing
When multiple attribute sources are used in an ABAC system (e.g. using attribute authori-
ties from different organizations in a distributed system) complications can arises in terms of
both evaluating the trustworthiness of attributes and ensuring that differing attribute sources
are using compatible attributes (e.g. using the same namespace and data type for common
attributes). The issue of trustworthiness is often dealt with by relying on pre-existing trust
relations negotiated between organizations before access control takes place; however, in peer-
to-peer scenarios this can be vastly more complicated. Shafiq et al. [Shafiq et al. 2005] offer
a potential solution in their hybrid ABAC model that includes a trust evaluation and negoti-
ation framework that both provides a trust assessment of claimed attributes and a means to
dynamically establish trust between collaborating organizations. Lee et al. [Lee et al. 2008]
propose an “attribute aggregation architecture” where attributes are gathered from neigh-
bouring peers and evaluated using a reputation-based trust scheme in which “each peer de-
cides its reputation about other peers based on its own experiences, and the trustworthiness of
a peer is evaluated with the assist of aggregated reputation”. It is possible that Shafiq’s, Lee’s
other research in dynamic trust negotiation could be easily applied to “pure” ABAC models;
however, most work in this area has assumed attributes are derived from a trusted source.

Ensuring attributes from different sources are compatible would likely require a commonly
accepted namespace or ontology of attribute names or alternatively some means of mapping
attributes to equivalent representations (as suggested in [Hu et al. 2013]). For example, if one
organization’s attribute store uses the name “job title” and another “role” to describe the same
attribute it would be difficult to create policies that are applicable to members of both organi-
zations without a detailed mapping between the two sets of attributes or complex policies that
take into account the differences in attribute composition in each store. A secondary issue in
attribute sharing is ensuring the confidentiality of sensitive user attributes. This is particu-
larly a concern when ABAC systems are used in domains such as health care where leaking
attributes about a user or object could be potentially compromising. Current work related
to attribute privacy or confidentiality has largely been limited to attribute-based encryption
applications but some efforts have been made towards generic privacy preserving attribute
sharing protocols [Camenisch et al. 2010; Ardagna et al. 2010; Esmaeeli and Shahriari 2010;
Zhang et al. 2013].

28



6 OPEN PROBLEMS 6.8 Scalability

6.8. Scalability
One of the important considerations before adopting ABAC as described in the NIST Guide
to ABAC Definition and Considerations [Hu et al. 2013] is the scalability of ABAC systems.
Unlike traditional access control technologies, such as RBAC, that have a proven track record
in being adopted in large scale real world systems, ABAC is still largely unproven in terms
of practical scalability. ABAC requires complex interactions between access control compo-
nents that may be distributed among different network resources or even across organiza-
tional boundaries. In large systems with thousands of users, permissions, and policies, it is
unclear how manageable ABAC solutions would be both in terms of administration and phys-
ical computing resources required. Real world case studies of large scale systems utilizing
ABAC concepts are required to determine the feasibility and usability of ABAC in such sce-
narios.

6.9. Administration and User Comprehension
A frequently overlooked aspect of ABAC is the “human aspect” or how usable such systems
may be for users, access control administrators and policy engineers. Lee & Winslett [Lee and
Winslett 2006] discuss the human factor challenges related to ABAC solutions and identify
a number of open problems in ABAC research related to administration and usability. They
describe the three main challenges as “Access Control Comprehension”, “Technology Manage-
ment” and “Policy Specification and Maintenance”.

Lee & Winslett characterize “Access Control Comprehension” as the end user’s ability to
comprehend the access control decisions made regarding their access requests. In the clas-
sical models, access control decisions are relatively straightforward (e.g. in RBAC, users are
either members of a role with the effective permissions they desire or not). However, in ABAC,
decisions may be the result of complex policies that not only involve the attributes of the user
but attributes of other, frequently changing, access control entities. Without sufficient under-
standing of both ABAC and the existing policies contained in the system, access decisions may
seem arbitrary if not entirely magical from an end user perspective. Lee & Winslett point to
efforts by Yao et al. towards visualization of such decisions [Yao et al. 2005] as a first step
towards a potential solution.

“Technology Management” concerns a user’s ability to manage their access control creden-
tials. In ABAC, subject credentials can be rather complex, consisting of technologies such as
cryptographic credentials, X.509 certificates and attribute sources from multiple distributed
attribute stores. Lee & Winslett point to the research by Whitten & Tygar [Whitten and Ty-
gar 1999] in which users had extreme difficulty managing PGP certificates for signing and
encrypting e-mails to argue that end users of ABAC systems will have similar if not more
extreme difficulties. This burden is worsened in systems that rely on end users to select the
subset of attributes to be activated in a given session. While the solution to this problem
likely lies in automating credential management, this has been largely unexplored in relation
to ABAC and warrants further study.

“Policy Specification and Maintenance” addresses challenges related to the increased com-
plexity inherent in ABAC administration and policy engineering. To date, almost no ABAC
models provide complete (or even partial) administration models while at the same time re-
quiring administrations and engineers to provide policies composed in complex XML-based
policy languages such as XACML. Furthermore, the potentially distributed nature of ABAC
means administration is no longer centralized but divided among multiple policy administra-
tion points and attribute stores. This significantly raises the training and education require-
ments for competent administrative users as well as hindering their ability to review current
configurations for security issues. Potential solutions may be found in analysis tools that allow
users with limited knowledge of mathematical or Boolean logic to create and evaluate realis-

29



6.10 Formal Security Analysis 6 OPEN PROBLEMS

tic access control policies, in automated tools for mining ABAC policies [Xu and Stoller 2014;
2013; 2015] and in new administrative access control structures such as hierarchical attribute
user and object groups [Servos and Osborn 2014].

6.10. Formal Security Analysis
While a number of works have sought to provide tools to analyze the security and safety
of the traditional models (namely RBAC) [Li and Tripunitara 2006; Sasturkar et al. 2006;
Stoller et al. 2007] and the policies they enforce, similar efforts for ABAC are still in their
infancy. The most relevant efforts to date (e.g. [Bryans 2005; Lin et al. 2010; Fisler et al. 2005;
Kolovski et al. 2007]) have focused on reasoning about and analysing access control policies
that may support attribute-based concepts independently of a formal access control model
(e.g. policies written in XACML). Although many of these concepts and tools can be applied
to the policies supported by ABAC models (particular if they are in a standardized policy
language like XACML), they alone can not provide a full security analysis of a given ABAC
model without taking into consideration the properties of the underlying model and the way
in which policies are combined and enforced.

A sensible starting point for future ABAC focused security analysis work may be found in
adapting the techniques used for RBAC such as those employed by Li & Tripunitara [Li and
Tripunitara 2006]. Li & Tripunitara use security analysis techniques [Li and Winsborough
2003] to view RBAC as a state-transition system in which state changes occur via admin-
istrative operations, with the goal of determining if undesirable states are possible. Whilst
they primarily use this state-transition system to explore security problems resulting from
RBAC administration, a number of the queries they define on a given system state could be
adapted for analysing ABAC systems. In particular, the following queries could be of interest
if attributes are considered in place of roles:

Simple Safety. If a state exists where a given (presumably untrusted) user can gain mem-
bership in a given role only intended for trusted users. A negative result would imply that
the system is safe.

Simple Availability. If a given permission is attainable in every possible state to a given
(presumably trusted) user. A positive result would imply that the permission is always
available to the user.

Bounded Safety. If in every possible state, only a given subset of (presumably trusted) users
can obtain the given permissions. A positive result would imply that the system is safe.

Liveness. Whether a given permission is always accessible to at least one user. A negative
result (i.e. that the permission is always accessible) would imply the liveness of the permis-
sion holds in the system.

Mutual Exclusion. If there exists no possible state where a user can be a member of two
distinct roles (r1 and r2). A positive result would imply that roles r1 and r2 are mutually
exclusive.

Containment. Whether in every reachable state any user who has a given permission is a
member of a given role. A positive result would imply that safety property is held (i.e. that
all holders of a given permission are also in a given role) and an availability property is
held (i.e. that a given permission is available to all members of a given role).

Adapting such queries to ABAC systems is challenging due to the increased flexibility pro-
vided by attribute-based policies and it’s identityless nature in which users may not be known
until runtime. This posses similar problems as faced when auditing ABAC systems (as dis-
cussed in Section 6.4), namely that efficiently calculating the result of such queries is difficult
when a large number of policies and attributes are present in a system. Rather than sim-
ply considering system states created by a combination of users, roles and permissions (as in

30



REFERENCES

RBAC), analysis of ABAC system would have to account for all possible combinations of at-
tributes (including possible combinations of values for each individual attribute), policies and
permissions. Leading to a drastically larger state space.

7. CONCLUSIONS & FUTURE WORK
This paper has introduced a taxonomy of current areas of ABAC and PBAC research, provided
a literature review of current attempts at formalizing ABAC models, and identified a number
of open problems in the literature. The taxonomy introduced in Section 4 subdivides the cur-
rent body of ABAC related research into related categories that are useful when discussing
and comparing recent efforts. The review of “pure” and hybrid ABAC models in Section 5 pro-
vides one of the most comprehensive summaries of existing academic work towards ABAC
model creation and has proven useful in identifying a number of areas for future work. The
open problems examined in Section 6 serve as potential starting points for new research ef-
forts.

As the literature surveyed in this work covered a number different types of ABAC models
in breadth, there is still room for future survey efforts directed at covering specific categories
or aspects of models in depth. An in-depth comparison and analysis of how current models
represent attribute-based policies, for example, would be of benefit to the community. As would
a more in-depth look at a specific subcategories of models (e.g. a longer review of Pure General
ABAC Models). Reviews of non-model related attribute topics could also be of interest, such
as attribute mining, attribute storage and sharing, attribute confidentiality and supporting
model independent architectures.

REFERENCES
Ali E Abdallah and Etienne J Khayat. 2005. A Formal Model for Parameterized Role-Based Access Control. In Formal

Aspects in Security and Trust. Springer, 233–246.
Nabil R Adam, Vijayalakshmi Atluri, Elisa Bertino, and Elena Ferrari. 2002. A Content-Based Authorization Model

for Digital Libraries. IEEE Transactions on Knowledge and Data Engineering 14, 2 (2002), 296–315.
Mohammad A Al-Kahtani and Ravi Sandhu. 2002. A Model for Attribute-Based User-Role Assignment. In Computer

Security Applications Conference, 2002. Proceedings. 18th Annual. IEEE, 353–362.
Hadiseh Seyyed Alipour and Mehdi Sabbari. 2012. Definition of Action and Attribute Based Access Control Rules

for Web Services. In Proceedings of the 2012 International Conference on Industrial Engineering and Operations
Management. Istanbul, Turkey, 869–878.

Claudio Agostino Ardagna, Sabrina De Capitani di Vimercati, Gregory Neven, Stefano Paraboschi, F-S Preiss,
Pierangela Samarati, and Mario Verdicchio. 2010. Enabling Privacy-Preserving Credential-Based Access Control
with XACML and SAML. In 2010 IEEE 10th International Conference on Computer and Information Technology
(CIT). IEEE, 1090–1095.

Franz Baader and Philipp Hanschke. 1991. A Scheme for Integrating Concrete Domains into Concept Languages.
Technical Report RR-91-10. DFKI Deutsches Forschungszentrum fr Knstliche Intelligenz.

Ezedin Barka and Ravi Sandhu. 2000a. Framework for Role-Based Delegation Models. In 16th Annual Conference on
Computer Security Applications (ACSAC’00). IEEE, 168–176.

Ezedin Barka and Ravi Sandhu. 2000b. A Role-Based Delegation Model and Some Extensions. In 23rd National
Information Systems Security Conference. 396–404.

Steve Barker. 2009. The Next 700 Access Control Models or a Unifying Meta-Model?. In Proceedings of the 14th ACM
Symposium on Access Control Models and Technologies. ACM, 187–196.

John Bethencourt, Amit Sahai, and Brent Waters. 2007. Ciphertext-Policy Attribute-Based Encryption. In 2007 IEEE
symposium on Security and Privacy (SP’07). IEEE, 321–334.

Rafae Bhatti, Arif Ghafoor, Elisa Bertino, and James BD Joshi. 2005. X-GTRBAC: an XML-Based Policy Specification
Framework and Architecture for Enterprise-Wide Access Control. ACM Transactions on Information and System
Security (TISSEC) 8, 2 (2005), 187–227.

Khalid Zaman Bijon, Ram Krishman, and Ravi Sandhu. 2013. Constraints Specification in Attribute Based Access
Control. Science 2, 3 (2013), pp–131.

31



REFERENCES REFERENCES

Rakesh Bobba, Omid Fatemieh, Fariba Khan, Arindam Khan, Carl A Gunter, Himanshu Khurana, and Manoj Prab-
hakaran. 2010. Attribute-Based Messaging: Access Control and Confidentiality. ACM Transactions on Informa-
tion and System Security (TISSEC) 13, 4 (2010), 31.

David FC Brewer and Michael J Nash. 1989. The Chinese Wall Security Policy. In 1989 IEEE Symposium on Security
and Privacy. IEEE, 206–214.

Jery Bryans. 2005. Reasoning About XACML Policies Using CSP. In Proceedings of the 2005 Workshop on Secure Web
Services. ACM, 28–35.

Daniel J Buehrer, Lo Tse-Wen, and Hsieh Chih-Ming. 2001. Abia Cadabia: A Distributed, Intelligent Database Ar-
chitecture. Intelligent Multimedia, Computing, and Communications (2001), 1–3.

Daniel J Buehrer and Chun-Yao Wang. 2012. CA-ABAC: Class Algebra Attribute-Based Access Control. In Proceed-
ings of the 2012 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent
Technology-Volume 03. IEEE Computer Society, 220–225.

Mike Burmester, Emmanouil Magkos, and Vassilis Chrissikopoulos. 2013. T-ABAC: An Attribute-Based Access Con-
trol Model for Real-Time Availability in Highly Dynamic Systems. In 2013 IEEE Symposium on Computers and
Communications (ISCC). IEEE, 000143–000148.

Jan Camenisch, Sebastian Mödersheim, Gregory Neven, Franz-Stefan Preiss, and Dieter Sommer. 2010. A Card Re-
quirements Language Enabling Privacy-Preserving Access Control. In Proceedings of the 15th ACM Symposium
on Access Control Models and Technologies. ACM, 119–128.

David W Chadwick, Alexander Otenko, and Edward Ball. 2003. Role-Based Access Control with X.509 Attribute
Certificates. Internet Computing, IEEE 7, 2 (2003), 62–69.

Yanzhe Che, Qiang Yang, Chunming Wu, and Lianhang Ma. 2010. BABAC: An Access Control Framework for Net-
work Virtualization Using User Behaviors and Attributes. In Proceedings of the 2010 IEEE/ACM International
Conference on Green Computing and Communications & International Conference on Cyber, Physical and Social
Computing. IEEE Computer Society, 747–754.

Yuan Cheng, Jaehong Park, and Ravi Sandhu. 2012. A User-to-User Relationship-Based Access Control Model for
Online Social Networks. In Data and Applications Security and Privacy XXVI. Springer, 8–24.

Yuan Cheng, Jaehong Park, and Ravi Sandhu. 2014. Attribute-Aware Relationship-Based Access Control for Online
Social Networks. In Data and Applications Security and Privacy XXVIII. Springer, 292–306.

Lorenzo Cirio, Isabel F Cruz, and Roberto Tamassia. 2007. A Role and Attribute Based Access Control System Using
Semantic Web Technologies. In Proceedings of the 2007 OTM Confederated International Conference on On the
Move to Meaningful Internet Systems - Volume Part II (OTM’07). Springer, 1256–1266.

James Clark, Steve DeRose, and Others. 1999. XML Path Language (XPath). W3C Recommendation 16 (1999).
Michael J Covington and Manoj R Sastry. A Contextual Attribute-Based Access Control Model. In Proceedings of the

2006 International Conference on On the Move to Meaningful Internet Systems: AWeSOMe, CAMS, COMINF, IS,
PKSinBIT.

Isabel F Cruz, Rigel Gjomemo, Benjamin Lin, and Mirko Orsini. 2008. A Location Aware Role and Attribute Based
Access Control System. In Proceedings of the 16th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems. ACM, 84.

Isabel F Cruz, Rigel Gjomemo, Benjamin Lin, and Mirko Orsini. 2009. A Constraint and Attribute Based Security
Framework for Dynamic Role Assignment in Collaborative Environments. In Collaborative Computing: Network-
ing, Applications and Worksharing. Springer, 322–339.

Ni Dan, Shi Hua-Ji, Chen Yuan, and Guo Jia-Hu. 2012. Attribute Based Access Control (ABAC)-Based Cross-Domain
Access Control in Service-Oriented Architecture (SOA). In 2012 International Conference on Computer Science &
Service System (CSSS). IEEE, 1405–1408.

Agostino Dovier, Carla Piazza, Enrico Pontelli, and Gianfranco Rossi. 2000. Sets and Constraint Logic Programming.
ACM Transactions on Programming Languages and Systems (TOPLAS) 22, 5 (2000), 861–931.

Ali Esmaeeli and Hamid Reza Shahriari. 2010. Privacy Protection of Grid Service Requesters Through Distributed
Attribute Based Access Control Model. In Proceedings of the 5th International Conference on Advances in Grid
and Pervasive Computing. Springer, 573–582.

S. Farrell and R. Housley. 2002. An Internet Attribute Certificate Profile for Authorization. RFC 3281. RFC Editor.
https://www.ietf.org/rfc/rfc3281.txt

S. Farrell, R. Housley, and S. Turner. 2010. An Internet Attribute Certificate Profile for Authorization. RFC 5755. RFC
Editor. https://tools.ietf.org/html/rfc5755

David Ferraiolo. 2013. Towards an ABAC Family of Models. http://csrc.nist.gov/projects/abac/july2013 workshop/
july2013 abac workshop abac-model-framework dferraiolo.pdf. (July 2013). Accessed: 2014-12-07.

32



REFERENCES REFERENCES

David Ferraiolo, Vijayalakshmi Atluri, and Serban Gavrila. 2011. The Policy Machine: A Novel Architecture and
Framework for Access Control Policy Specification and Enforcement. Journal of Systems Architecture 57, 4 (2011),
412–424.

David Ferraiolo, Serban Gavrila, and Wayne Jansen. 2015. Policy Machine: Features, Architecture, and Specification.
Technical Report NISTIR 7987 Revision 1. National Institute of Standards and Technology. http://dx.doi.org/10.
6028/NIST.IR.7987r1

David F Ferraiolo, Ravi Sandhu, Serban Gavrila, D Richard Kuhn, and Ramaswamy Chandramouli. 2001. Proposed
NIST Standard for Role-Based Access Control. ACM Transactions on Information and System Security (TISSEC)
4, 3 (2001), 224–274.

Elena Ferrari, Nabil R Adam, Vijayalakshmi Atluri, Elisa Bertino, and Ugo Capuozzo. 2002. An Authorization System
for Digital Libraries. The VLDB Journal 11, 1 (2002), 58–67.

Jeffrey Fischer, Daniel Marino, Rupak Majumdar, and Todd Millstein. 2009. Fine-Grained Access Control with Object-
Sensitive Roles. In Proceedings of the 23rd European Conference of ECOOP 2009 — Object-Oriented Program-
ming. Springer, 173–194.

Kathi Fisler, Shriram Krishnamurthi, Leo A Meyerovich, and Michael Carl Tschantz. 2005. Verification and Change-
Impact Analysis of Access-Control Policies. In Proceedings of the 27th International Conference on Software En-
gineering. ACM, 196–205.

Mei Ge and Sylvia L Osborn. 2004. A Design for Parameterized Roles. In Research Directions in Data and Applications
Security XVIII. Springer, 251–264.

Luigi Giuri and Pietro Iglio. 1997. Role Templates for Content-Based Access Control. In Proceedings of the Second
ACM Workshop on Role-Based Access Control. ACM, 153–159.

Simon Godik, Anne Anderson, Bill Parducci, Polar Humenn, and Sekhar Vajjhala. 2002. OASIS eXtensible Access
Control Markup Language (XACML). Technical Report. OASIS.

Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. 2006. Attribute-Based Encryption for Fine-Grained
Access Control of Encrypted Data. In Proceedings of the 13th ACM Conference on Computer and Communications
Security. ACM, 89–98.

Ruo-Fei Han, Hou-Xiang Wang, Qian Xiao, Xiao-Pei Jing, and Hui Li. 2009. A United Access Control Model for
Systems in Collaborative Commerce. Journal of Networks 4, 4 (2009), 279–289.

Zhengqiu He, Lifa Wu, Huabo Li, Haiguang Lai, and Zheng Hong. 2011. Semantics-Based Access Control Approach
for Web Service. Journal of Computers 6, 6 (2011), 1152–1161.

Richard Dean Holowczak. 1997. Extractors for Digital Library Objects. Ph.D. Dissertation. Rutgers University, De-
partment of MS/CIS.

Ian Horrocks, Peter F Patel-Schneider, Harold Boley, Said Tabet, Benjamin Grosof, Mike Dean, and others. 2004.
SWRL: A Semantic Web Rule Language Combining OWL and RuleML. W3C Member Submission 21 (2004), 79.

Vincent C Hu, David Ferraiolo, Rick Kuhn, Arthur R Friedman, Alan J Lang, Margaret M Cogdell, Adam Schnitzer,
Kenneth Sandlin, Robert Miller, and Karen Scarfone. 2013. Guide to Attribute Based Access Control (ABAC)
Definition and Considerations (Draft). NIST Special Publication 800 (2013), 162.

Jingwei Huang, David M Nicol, Rakesh Bobba, and Jun Ho Huh. 2012. A Framework Integrating Attribute-Based
Policies into Role-Based Access Control. In Proceedings of the 17th ACM Symposium on Access Control Models
and Technologies. ACM, 187–196.

John Hughes and Eve Maler. 2005. Security Assertion Markup Language (SAML) V2.0 Technical Overview. Technical
Report. OASIS.

Junbeom Hur and Dong Kun Noh. 2011. Attribute-Based Access Control with Efficient Revocation in Data Outsourc-
ing Systems. IEEE Transactions on Parallel and Distributed Systems 22, 7 (2011), 1214–1221.

INCITS. 2013. Information Technology - Next Generation Access Control - Functional Architecture (NGAC-FA). Tech-
nical Report INCITS 499-2013. American National Standard for Information Technology, American National
Standards Institute.

INCITS. 2015. Information technology - Next Generation Access Control Generic Operations and Data Structures
(NGAC-GOADS). Technical Report INCITS 499-2013. American National Standard for Information Technology,
American National Standards Institute.

Peng Jin and Yang Fang-chun. 2006. Description Logic Modeling of Temporal Attribute-Based Access Control. In 2006
First International Conference on Communications and Electronics. IEEE, 414–418.

Xin Jin, Ram Krishnan, and Ravi Sandhu. 2012a. A Unified Attribute-Based Access Control Model Covering DAC,
MAC and RBAC. In Data and Applications Security and Privacy XXVI. Springer, 41–55.

Xin Jin, Ravi Sandhu, and Ram Krishnan. 2012b. RABAC: Role-Centric Attribute-Based Access Control. In Pro-
ceedings of the 6th International Conference on Mathematical Methods, Models and Architectures for Computer
Network Security: Computer Network Security. Springer, 84–96.

33



REFERENCES REFERENCES

James BD Joshi, Elisa Bertino, Usman Latif, and Arif Ghafoor. 2005. A Generalized Temporal Role-Based Access
Control Model. IEEE Transactions on Knowledge and Data Engineering 17, 1 (2005), 4–23.

Florian Kerschbaum. 2010. An Access Control Model for Mobile Physical Objects. In Proceedings of the 15th ACM
Symposium on Access Control Models and Technologies. ACM, 193–202.

Etienne J Khayat and Ali E Abdallah. 2003. A Formal Model for Flat Role-Based Access Control. In ACS/IEEE
International Conference on Computer Systems and Applications (AICCSA03), Vol. 4.

Vladimir Kolovski, James Hendler, and Bijan Parsia. 2007. Analyzing Web Access Control Policies. In Proceedings of
the 16th International Conference on World Wide Web. ACM, 677–686.

D Richard Kuhn, Edward J Coyne, and Timothy R Weil. 2010. Adding Attributes to Role-Based Access Control. IEEE
Computer 43, 6 (2010), 79–81.

Bo Lang, Ian Foster, Frank Siebenlist, Rachana Ananthakrishnan, and Tim Freeman. 2006. Attribute Based Access
Control for Grid Computing. (2006). http://www.mcs.anl.gov/uploads/cels/papers/P1367.pdf

Bo Lang, Ian Foster, Frank Siebenlist, Rachana Ananthakrishnan, and Tim Freeman. 2009. A Flexible Attribute
Based Access Control Method for Grid Computing. Journal of Grid Computing 7, 2 (2009), 169–180.

Bo Lang, Hangyu Li, and Wenting Ni. 2010. Attribute-Based Access Control for Layered Grid Resources. In Commu-
nication and Networking. Springer, Berlin, Heidelberg, 31–40.

Adam J Lee and Marianne Winslett. 2006. Open Problems for Usable and Secure Open Systems. In Workshop on
Usability Research Challenges for Cyberinfrastructure and Tools Held in Conjunction With ACM CHI.

Jaewon Lee, Heeyoul Kim, and Joon Sung Hong. 2008. An Attribute Aggregation Architecture with Trust-Based
Evaluation for Access Control. In NOMS 2008-2008 IEEE Network Operations and Management Symposium.
1011–1014.

Ninghui Li and Mahesh V Tripunitara. 2006. Security Analysis in Role-Based Access Control. ACM Transactions on
Information and System Security (TISSEC) 9, 4 (2006), 391–420.

Ninghui Li and William H Winsborough. 2003. Beyond Proof-of-Compliance: Safety and Availability Analysis in Trust
Management. In 2003 Symposium on Security and Privacy. IEEE, 123–139.

Feng Liang, Haoming Guo, Shengwei Yi, and Shilong Ma. 2012. A Multiple-Policy Supported Attribute-Based Access
Control Architecture Within Large-Scale Device Collaboration Systems. Journal of Networks 7, 3 (2012), 524–
531.

Dan Lin, Prathima Rao, Elisa Bertino, Ninghui Li, and Jorge Lobo. 2010. EXAM: a Comprehensive Environment for
the Analysis of Access Control Policies. International Journal of Information Security 9, 4 (2010), 253–273.

Emil Lupu and Morris Sloman. 1997. Reconciling Role Based Management and Role Based Access Control. In Pro-
ceedings of the Second ACM Workshop on Role-Based Access Control. ACM, 135–141.

Deborah L McGuinness, Frank Van Harmelen, and Others. 2004. OWL Web Ontology Language Overview. W3C
Recommendation (2004).

Matunda Nyanchama and Sylvia Osborn. 1999. The Role Graph Model and Conflict of Interest. ACM Transactions
on Information and System Security (TISSEC) 2, 1 (1999), 3–33.

Jaehong Park and Ravi Sandhu. 2004. The UCON ABC Usage Control Model. ACM Transactions on Information and
System Security (TISSEC) 7, 1 (2004), 128–174.

Eric PrudHommeaux, Andy Seaborne, and Others. 2008. SPARQL Query Language for RDF. W3C Recommendation
15 (2008).

Carlos E Rubio-Medrano, Clinton D’Souza, and Gail-Joon Ahn. 2013. Supporting Secure Collaborations With
Attribute-Based Access Control. In 2013 9th International Conference Conference on Collaborative Computing:
Networking, Applications and Worksharing (Collaboratecom). IEEE, 525–530.

Amit Sasturkar, Ping Yang, Scott D Stoller, and CR Ramakrishnan. 2006. Policy Analysis for Administrative Role
Based Access Control. In 19th IEEE Computer Security Foundations Workshop (CSFW’06). IEEE, 13–pp.

Daniel Servos. 2012. A Role and Attribute Based Encryption Approach to Privacy and Security in Cloud Based Health
Services. Master’s thesis. Lakehead University. http://knowledgecommons.lakeheadu.ca/handle/2453/286

Daniel Servos, Sabah Mohammed, Jinan Fiaidhi, and Tai hoon Kim. 2013. Extensions to Ciphertext-Policy Attribute-
Based Encryption to Support Distributed Environments. International Journal of Computer Applications in Tech-
nology 47, 2 (2013), 215–226.

Daniel Servos and Sylvia L Osborn. 2014. HGABAC: Towards a Formal Model of Hierarchical Attribute-Based Access
Control. In 7th International Symposium on Foundations and Practice of Security (FPS’2014). Springer, 187–204.

Basit Shafiq, Elisa Bertino, and Arif Ghafoor. 2005. Access Control Management in a Distributed Environment Sup-
porting Dynamic Collaboration. In Proceedings of the 2005 Workshop on Digital Identity Management. ACM,
104–112.

34



REFERENCES REFERENCES

Haibo Shen. 2009. A Semantic-Aware Attribute-Based Access Control Model for Web Services. In Proceedings of the
9th International Conference on Algorithms and Architectures for Parallel Processing. Springer, 693–703.

Hai-bo Shen and Fan Hong. 2006. An Attribute-Based Access Control Model for Web Services. In 2006 Seventh Inter-
national Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT’06). IEEE,
74–79.

Waleed W Smari, Patrice Clemente, and Jean-Francois Lalande. 2014. An Extended Attribute Based Access Control
Model With Trust and Privacy: Application to a Collaborative Crisis Management System. Future Generation
Computer Systems 31 (2014), 147–168.

Waleed W Smari, Jian Zhu, and Patrice Clemente. 2009. Trust and Privacy in Attribute Based Access Control for
Collaboration Environments. In Proceedings of the 11th International Conference on Information Integration and
Web-based Applications & Services. ACM, 49–55.

Scott D Stoller, Ping Yang, C R Ramakrishnan, and Mikhail I Gofman. 2007. Efficient Policy Analysis for Administra-
tive Role Based Access Control. In Proceedings of the 14th ACM Conference on Computer and Communications
Security. ACM, 445–455.

Guojun Wang, Qin Liu, and Jie Wu. 2010. Hierarchical Attribute-Based Encryption for Fine-Grained Access Con-
trol in Cloud Storage Services. In Proceedings of the 17th ACM Conference on Computer and Communications
Security. ACM, 735–737.

He Wang and Sylvia L Osborn. 2006. Delegation in the Role Graph Model. In Proceedings of the Eleventh ACM
Symposium on Access Control Models and Technologies. ACM, 91–100.

He Wang and Sylvia L Osborn. 2011. Static and Dynamic Delegation in the Role Graph Model. IEEE Transactions on
Knowledge and Data Engineering 23, 10 (2011), 1569–1582.

Lingyu Wang, Duminda Wijesekera, and Sushil Jajodia. 2004. A Logic-Based Framework for Attribute Based Access
Control. In Proceedings of the 2004 ACM Workshop on Formal Methods in Security Engineering. ACM, 45–55.

Brent Waters. 2011. Ciphertext-Policy Attribute-Based Encryption: An Expressive, Efficient, and Provably Secure
Realization. In International Workshop on Public Key Cryptography. Springer, 53–70.

Yonghe Wei, Chunjing Shi, and Weiping Shao. 2010. An Attribute and Role Based Access Control Model for Service-
Oriented Environment. In 2010 Chinese Control and Decision Conference. IEEE, 4451–4455.

Alma Whitten and J Doug Tygar. 1999. Why Johnny Can’t Encrypt: A Usability Evaluation of PGP 5.0. In Usenix
Security, Vol. 1999.

Jian Shu Lianghong Shi Bing Xia and Linlan Liu. 2009. Study on Action and Attribute-Based Access Control Model
for Web Services. In 2009 Second International Symposium on Information Science and Engineering. 213–216.

Zhongyuan Xu and Scott D Stoller. 2013. Mining Attribute-Based Access Control Policies from RBAC Policies. In 10th
International Conference and Expo on Emerging Technologies for a Smarter World (CEWIT). IEEE, 1–6.

Zhongyuan Xu and Scott D Stoller. 2014. Mining Attribute-Based Access Control Policies from Logs. In IFIP Annual
Conference on Data and Applications Security and Privacy. Springer, 276–291.

Zhongyuan Xu and Scott D Stoller. 2015. Mining Attribute-Based Access Control Policies. IEEE Transactions on
Dependable and Secure Computing 12, 5 (2015), 533–545.

Danfeng Yao, Michael Shin, Roberto Tamassia, and William H Winsborough. 2005. Visualization of Automated Trust
Negotiation. In IEEE Workshop on Visualization for Computer Security (VizSEC 05). IEEE, 65–74.

Shucheng Yu, Cong Wang, Kui Ren, and Wenjing Lou. 2010. Achieving Secure, Scalable, and Fine-Grained Data
Access Control in Cloud Computing. In 2010 Proceedings IEEE of INFOCOM. IEEE, 1–9.

Eric Yuan and Jin Tong. 2005. Attributed Based Access Control (ABAC) for Web Services. In IEEE International
Conference on Web Services (ICWS’05). IEEE, 569.

Guoping Zhang, Jing Liu, and Jianbo Liu. 2013. Protecting Sensitive Attributes in Attribute Based Access Control.
In International Conference on Service-Oriented Computing (ICSOC). Springer, 294–305.

Xinwen Zhang, Yingjiu Li, and Divya Nalla. 2005. An Attribute-Based Access Matrix Model. In Proceedings of the
2005 ACM Symposium on Applied Computing. ACM, 359–363.

Xinwen Zhang, Sejong Oh, and Ravi Sandhu. 2003. PBDM: a Flexible Delegation Model in RBAC. In Proceedings of
the Eighth ACM Symposium on Access Control Models and Technologies. ACM, 149–157.

Yongsheng S Zhang, Mingfeng F Wu, Lei Wu, and Yuanyuan Y Li. 2014. Attribute-Based Access Control Security
Model in Service-Oriented Computing. In Proceedings of the 2012 International Conference on Cybernetics and
Informatics. Springer, 1473–1479.

Jian Zhu and Waleed W Smari. 2008. Attribute Based Access Control and Security for Collaboration Environments.
In 2008 IEEE National Aerospace and Electronics Conference. IEEE, 31–35.

Yiqun Zhu, Jianhua Li, and Quanhai Zhang. 2008. General Attribute Based RBAC Model for Web Services. Wuhan
University Journal of Natural Sciences 13, 1 (2008), 81–86.

35



REFERENCES REFERENCES

Appendix

Table II. Column Legend for Tables III and IV.

Column Description

Object
Attributes

Whether the model supports object or resource attributes.

User
Attributes

Whether the model supports user or subject attributes.

Environment
Attributes

Whether the model supports attributes that describe the systems environment (e.g. current
time, number of online users, etc.).

Connection
Attributes

If the model supports attributes relating to the subject’s session and/or connection to the
system (e.g. subject’s host name, IP, session id, etc.).

Mutable
Attributes

If the model supports attributes whose value change as a result of a subject’s requests on a
system.

Policy
Language

If the model formalizes it’s own policy language (3) or the language being used (e.g. XACML).

Hierarchical Whether the model supports hierarchical constructs to simplify administration and/or in-
crease flexibility of policies. (e.g. hierarchical attributes, hierarchical user or object groups,
etc.).

Recursive
Rules

If the policy language presented in the work supports recursive rules or policies.

Trust Whether the model incorporates the notion of trust similar to that found in trust-based access
control.

User &
Object
Groups

Whether the model supports user or object groups to simplify administration and/or increase
flexibility of policies.

Separation of
Duties

Whether the model supports any kind of separation of duties and the types supported (e.g.
static, dynamic, etc.).

Delegation If subjects are able to delegate a subset of their attributes or privileges to other subjects.
Functional
Specification

Whether a functional specification is provided with the model.

Formal
Model

If the model is formalized (i.e. if any formal language or notation is used to fully describe the
model).

Emulates
Traditional
Models

If it is shown that the model can emulate the traditional models of access control (e.g. DAC,
MAC, RBAC).

Administration
Model

If an administrative model or functions are defined or presented.

Complete
Model

Whether the model is complete, that is, if all necessary components of a usable ABAC model
are presented and described.

Extends The models extend or used as the basis to create this hybrid ABAC model (Only used in Table
VI).

Identityless If this hybrid ABAC model allows for identityless access control. That is, access control that
does not require pre-existing knowledge about the user or their roles in the system. (Only
used in Table VI).

36



REFERENCES REFERENCES

Table III. Comparison of General ABAC Models.

[Wang et al.
2004]

[Jin et al.
2012a]

[Zhang et al.
2005]

[Rubio-
Medrano

et al. 2013]

[Servos and
Osborn 2014]

[Ferraiolo
et al. 2011]

Object
Attributes 7 3 3 3 3

3(Attributes
do not have

values)

User Attributes 3 3 3 3 3
3(Attributes
do not have

values)

Environment
Attributes 7 7 7 3 3 7

Connection
Attributes 7 7 7 7 3 7

Mutable
Attributes 7 7 7 7 7 7

Policy
Language

Has method
of

representing
policies but
no defined
language

3

No details
given for how
policies are
represented

No policy
language use
(left to future

work)

3

Policies
expressed as

chain of
attribute

assignments

Hierarchical Hierarchical
attributes 7 7 7

Hierarchical
user and

object groups

Hierarchical
attributes

Recursive
Rules 3 7 7

Supported via
cycles in the
TP-Graph

7 7

Trust 7 7 7 7 7 7

User & Object
Groups 7 7 7 7 3 7

Separation of
Duties 7 7 7 7 7 3

Delegation 7 7 7 7 7 7

Functional
Specification 7 3 7 7 7 7

Formal Model 3 3 3 Largely
informal 3 3

Emulates
Traditional
Models

Not
demonstrated 3 Not

demonstrated
Not

demonstrated 3 3

Administration
Model 7 Limited Very limited 7 7 3

Complete
Model

Only models
policies and

their
evaluation

3 3 3 3 3

37



REFERENCES REFERENCES

Table IV. Comparison of Domain Specific ABAC Models.

[Buehrer
and Wang

2012]

[Burmester
et al. 2013]

[Smari
et al. 2009;
Smari et al.

2014]

[Liang et al.
2012]

[Covington
and Sastry ]

[Kerschbaum
2010]

[Lang et al.
2006; 2009]

Domain Cloud
Computing

Real-time
Systems

Collaborative
Environ-

ments

Collaborative
Environ-

ments

Mobile En-
vironments

Mobile En-
vironments

Grid
computing

Object
Attributes 3 3 3 3 3 3 3

User Attributes 3 3 3 3 3 3 3

Environment
Attributes 3 3 7 3 3 7 3

Connection
Attributes 7 7 7 7 7 7

Shown in
example but

not model

Mutable
Attributes 7 7

Mutable
trust

attribute
7

Limited,
based on

transaction
attributes

7 7

Policy
Language

Class
Algebra

(from
Cadabia

knowledge
base)

Does not
mention
policies

Policy
language
shown in
examples
but not
defined

XACML

Claims to
have policy
language
but is left
undefined

and no
examples

given

XACML

Policies are
algorithms,
no language
used/defined

Hierarchical 7 7 7 7 7 7 7

Recursive
Rules 7 7 7 7 7 7 7

Trust 7 7 3 7 7 7 7

User & Object
Groups 7 7 7 7 7 7 7

Separation of
Duties 7 7 7 7 7 7 7

Delegation 7 7 7 7 7 7 7

Functional
Specification 7 7 7 7 7 7 7

Formal Model Informal

Only
formalizes
real-time
attributes
and packet
mechanics

3 3 Informal 3 3

Emulates
Traditional
Models

Not demon-
strated

Not demon-
strated

Not demon-
strated

Not demon-
strated

Not demon-
strated

Not demon-
strated

Not demon-
strated

Administration
Model 7 7 7 7 7 7 7

Complete
Model

Lacks
details,
mostly

describes
policy use

Only
models

real-time
attributes
and packet
mechanics

Lacks
details,

unclear how
policies are
evaluated

and format
of

attributes

Lacks
details,
more

architecture
then model

Lacks
details,
policy

language
not

formalized

3 3

Continued on next page in Table V.38



REFERENCES REFERENCES

Table V. Comparison of Domain Specific ABAC Models (continued from Table IV).

[Lang et al.
2010]

[Yuan and
Tong 2005]

[Shen and
Hong 2006]

[Dan et al.
2012]

[Xia and
Liu 2009] [Shen 2009] [Zhang

et al. 2014]

Domain Grid
computing

Web
Services

Web
Services

Web
Services

Web
Services

Web
Services

Web
Services

Object
Attributes 3 3 3 3 3 7 3

User Attributes 3 3 3 3 3 3 3

Environment
Attributes 3 3 3 3 3 7 3

Connection
Attributes 7 7 7 7 7 7 7

Mutable
Attributes 7 7 7 7 7 7 7

Policy
Language XACML

Model lacks
language,
implemen-
tation uses

XACML

XACML

Model lacks
language,
implemen-
tation uses

XACML

XACML XACML XACML

Hierarchical 7 7 7 7 7 7 7

Recursive
Rules 7 7 7 7 7 7 7

Trust 7 7 7 7 7 7

Claims
trust

attribute
but fails to

provide
details

User & Object
Groups 7 7 7 7 7 7 7

Separation of
Duties 7 7 7 7 7 7 7

Delegation 7 7 7 7 7 7 7

Functional
Specification 7 7 7 7 7 7 7

Formal Model Largely
informal Simplistic Simplistic Simplistic 3 Informal Largely

Informal

Emulates
Traditional
Models

Not demon-
strated

Not demon-
strated

Not demon-
strated

Not demon-
strated

Not demon-
strated

Not demon-
strated

Not demon-
strated

Administration
Model 7 7 7 7 7 7 7

Complete
Model

Minimal
model,
mostly

architecture
combining
existing
works

3 3

More imple-
mentation

using
XACML

then model

3

More
theoretical

architecture
combining
existing

works then
model

Basic
definitions
for model,

mostly
architecture
combining
existing
works.

39



REFERENCES REFERENCES

Table VI. Comparison of Hybrid ABAC Models

Parameterized Role-Based Access Control Attribute-Based Role
Assignment

[Ge and
Osborn
2004]

[Giuri and
Iglio 1997]

[Abdallah
and Khayat

2005]

[Lupu and
Sloman
1997]

[Fischer
et al. 2009]

[Al-Kahtani
and Sandhu

2002]

[Shafiq
et al. 2005]

Extends

Role Graph
Model
[Nyan-

chama and
Osborn
1999]

RBAC

FRBAC
[Khayat

and
Abdallah

2003]

RBAC &
RBM RBAC RBAC

GTRBAC
[Joshi et al.

2005]

Identityless 7 7 7 7 7 3 Both

Object
Attributes 3 7 3 3 7 7 7

User Attributes 3 3 3 7 3 3 3

Environment
Attributes 7

Day of week
attribute
shown in

example but
not detailed

7

Time
attribute
shown in

example but
not detailed

7 7

Temporal
attributes

from
extended

model

Connection
Attributes 7 7 7 7 7 7 7

Mutable
Attributes 7 7 7 7 7 7 Mutable

trust values

Policy
Language XPath

No policy
language
formally
defined

(shown in
examples)

N/A

No policy
language
formally
defined

(shown in
examples)

3 3

SAML &
X-GTRBAC

[Bhatti
et al. 2005]

Hierarchical Hierarchical
roles 7 7 Hierarchical

roles 7 Hierarchical
roles

Hierarchical
roles

Trust 7 7 7 7 7 7 3

Separation of
Duties

From
extended

model
7 7 7 7

Constraints
on use of

roles
mentioned

but not
detailed

From
extended

model

Delegation 7 7 7 7 7 7 7

Functional
Specification 7 7 7 7 7 7 7

Formal Model 3 3 3 Informal 3 3 3

Administration
Model

Does not
expand on
extended

model

7 7 7 7 7 7

Complete
Model 3

Definition
and

evaluation
of policies

and
attributes is

only
vaguely
defined

3

Lacks
details,
mostly

framework
for adding

RBM
concepts to

RBAC

3 3 3

Continued on next page in Table VII.

40



REFERENCES REFERENCES

Table VII. Comparison of Hybrid ABAC Models (continued from Table VI)

Attribute-Based Role Assignment (continued)

[Jin and
Fang-chun

2006]

[Cirio et al.
2007]

[Cruz et al.
2009; 2008]

[Zhu et al.
2008]

[Wei et al.
2010]

[He et al.
2011]

Extends RBAC RBAC RBAC RBAC RBAC RBAC

Identityless 3 3 Both 3 3 Both

Object
Attributes 7 7 3 3 3 7

User Attributes 3 3 3 3 3 3

Environment
Attributes

Temporal
attributes 7 7 7 7 7

Connection
Attributes 7 7 7 7 7 7

Mutable
Attributes 7 7 7 7 7 7

Policy
Language

ALC(D)
[Baader and
Hanschke

1991]

Unclear.
OWL and
SPARQL

[PrudHom-
meaux et al.
2008] used

for
modelling

RBAC.

OWL
[McGuin-
ness et al.

2004]

Policy
language

not formally
defined

No policy
language
shown or
defined

SWRL
[Horrocks

et al. 2004]

Hierarchical Hierarchical
roles 7 Hierarchical

roles
Hierarchical

roles
Hierarchical

roles
Hierarchical

roles

Trust 7 7 7 7 7 7

Separation of
Duties 7 3 7 7 3 3

Delegation 7 7 7 7 7 7

Functional
Specification 7 7 7 7 7 7

Formal Model 3
Only RBAC
modelling
formalized

Largely
informal 3 3 3

Administration
Model 7 7 7 7 7 7

Complete
Model 3

Mostly
covers

modelling
RBAC in a

an OWL-DL
ontology.

Few details
given on

attributes.

3 3

Limited
details on

how
constraints
and policies
are handled
or defined

3

Continued on next page in Table VIII.

41



REFERENCES REFERENCES

Table VIII. Comparison of Hybrid ABAC Models (continued from Table VII)

Attribute-
Centric

Role-
Centric

Unified Models of Access Control

[Huang
et al. 2012]

[Jin et al.
2012b]

[Han et al.
2009]

[Che et al.
2010]

[Cheng
et al. 2014]

Extends RBAC &
ABAC

NIST RBAC
[Ferraiolo

et al. 2001]
& ABACα

[Jin et al.
2012a]

RBAC,
TBAC, &

ABAC

ABAC &
BBAC

ABAC &
UURAC
[Cheng

et al. 2012]

Identityless 3 7 Both 3 7

Object
Attributes 3 3 3 7 3

User Attributes 3 3 3 3 3

Environment
Attributes 3 7 7 3 7

Connection
Attributes 7 7 7 7 7

Mutable
Attributes 7 7 7

Limited.
Based on

user
behaviours.

7

Policy
Language

Informal
custom
policy

language

CPL [Jin
et al. 2012a] XACML

Example
policies

shown but
no language

defined.

3

Hierarchical 7
Hierarchical
roles from

NIST RBAC

Hierarchical
roles 7 7

Trust 7 7 7 7 7

Separation of
Duties 7 From NIST

RBAC 3 7 7

Delegation 7 7 7 7 7

Functional
Specification 7 3 7 7 7

Formal Model
3

(other than
policy)

3 3 Largely
informal 3

Administration
Model 7 From NIST

RBAC 7 7 7

Complete
Model 3 3 3 3 3

Received June 2015; revised July 2016; accepted ?

42



REFERENCES REFERENCES

A
B

A
C

 
M

o
de

ls
A

pp
lie

d 
W

o
rk

s 
an

d
 

Im
p

le
m

en
ta

ti
o

n
s

P
ol

ic
y

A
tt

ri
b

u
te

s

Sy
st

e
m

at
iz

at
io

n 
o

f 
K

n
o

w
le

d
ge

P
ur

e 
A

B
A

C 
M

o
de

ls
H

yb
ri

d
M

o
de

ls

G
e

n
e

ra
l

D
o

m
a

in
Sp

e
ci

fi
c

Cl
o

u
d 

Co
m

p
ut

in
g

C
o

lla
b

o
ra

ti
ve

 
En

vi
ro

n
m

en
ts

R
ea

l-
ti

m
e

 
S

ys
te

m
s

M
o

bi
le

 
En

vi
ro

n
m

en
ts

W
eb

 
Se

rv
ic

es

Co
n

fi
de

n
ti

al
it

y
La

n
gu

ag
e

s
Ev

al
u

at
io

n
an

d
 T

e
st

in
g

C
o

n
fi

d
e

n
ti

a
lit

y
St

o
ra

ge
 

an
d

 S
h

ar
in

g
(C

e
rt

if
ic

at
es

)

X
A

CM
L

B
a

se
d

SA
M

L
B

a
se

d
O

th
er

C
u

rr
en

t 
A

B
A

C
 

Li
te

ra
tu

re

M
in

in
g 

an
d

 
E

n
g

in
e

e
ri

n
g

G
ri

d 
Co

m
p

ut
in

g
O

th
er

P
R

BA
C

A
tt

ri
b

u
te

-B
as

ed
 

R
o

le
 A

ss
ig

n
m

e
nt

A
tt

ri
b

u
te

-
C

e
n

tr
ic

R
o

le
-C

e
nt

ri
c

U
n

if
ie

d
M

o
de

ls

Fi
g.

5.
Ta

xo
no

m
y

of
cu

rr
en

t
re

se
ar

ch
ar

ea
s

in
A

B
A

C
.E

ac
h

ca
te

go
ry

is
de

sc
ri

be
d

in
Ta

bl
e

I.

43


