
HGABAC: Towards a Formal Model of
Hierarchical Attribute-Based Access Control

Daniel Servos and Sylvia L. Osborn

Department of Computer Science
Western University

London, Ontario, Canada
dservos5@uwo.ca sylvia@csd.uwo.ca

Abstract. Attribute-based access control (ABAC) is a promising alter-
native to traditional models of access control (i.e. discretionary access
control (DAC), mandatory access control (MAC) and role-based access
control (RBAC)) that is drawing attention in both recent academic liter-
ature and industry application. However, formalization of a foundational
model of ABAC and large scale adoption are still lacking. This paper
seeks to aid in the transition by providing a formal model of hierarchical
ABAC, called Hierarchical Group and Attribute-Based Access Control
(or HGABAC), which includes attribute inheritance through user and
object groups as well as environment, connection and administrative at-
tributes. A formal specification and an attribute-based policy language
are provided. Finally, several example configurations (which demonstrate
the versatility of the model) are presented and evaluated.

1 Introduction
Until recently, access control research and real world access control implemen-
tations have largely fallen under one of the three traditional models of ac-
cess control: discretionary access control (DAC)[11], mandatory access control
(MAC)[1, 5] or role-based access control (RBAC)[6, 14]. In these models, access
control decisions are largely based on the identity of the user. In DAC this often
takes the form of an access control list (ACL) mapping users to permissions on
an object, while MAC is based around a security lattice controlling the direc-
tion of information flow. In dynamic environments where information sharing
between systems and users from different security domains is common, these
identity-based access control models are inadequate. While RBAC provides a
more generalized model than MAC or DAC [13], it also falls short in cases where
users and their respective roles in the system are poorly defined beforehand. A
secondary issue, common among these models, is the simplicity of the access
control policies. In the case of RBAC, all access control policies must fit the
form of “if a user is assigned a role X they are granted the set of permissions
Y”. However, this is insufficiently flexible for many real world scenarios. For
example, a bank may only permit an employee with the role “teller” to access
clients’ accounts during set times of the day and week or limit their access to
accounts based on a systemwide threat level. In both cases, the policy would be
too complex to express in a traditional RBAC model.

To date, researchers have largely approached this problem by extending foun-
dational RBAC models to compensate for inadequate flexibility required for their
particular use case (e.g. [3, 10, 15, 4]). However, there has been a growing de-
mand from both government and industry for a more general and dynamic model
of access control, namely attribute-based access control (ABAC). Rather than
basing access control decisions on a user’s identity like the traditional meth-
ods, ABAC bases access control around the attributes of a user, the objects
being accessed, the environment and a number of other attribute sources. Ide-
ally, these are all properties of the elements already existing in the system and
do not need to be manually entered by administration (e.g. many of the at-
tributes about a document come from its existing metadata; author, title, etc.).
Access policies can be created, limiting access to certain resources or objects,
based on the result of a boolean statement comparing attributes, for example
“user.age >= 18 OR object.owner == user.id”. This allows for flexible enforce-
ment of real world policies, while only requiring knowledge of some subset of
attributes about a given user.

Despite the demand for and potential advantages of ABAC, little has been
accomplished in the way of formalizing foundational models and large scale
adoption is still in its early stages. The work detailed in this paper seeks to
provide a formalized hierarchical model of ABAC, entitled Hierarchical Group
and Attribute-Based Access Control (or HGABAC), which introduces a group
based hierarchical representation of object and user attributes that is lacking
in current models. HGABAC is intended to be a starting point that is detailed
enough for real world use but generic enough to emulate traditional models of
access control.

The rest of this paper is organized as follows. Section 2 reviews the existing
work related to attribute-based access control models and current efforts towards
standardization. Section 3 outlines our proposed model of ABAC, HGABAC,
and provides a formal specification, as well as details of the policy language
used and the group hierarchy. Section 4 gives an example use case and evaluates
the solution HGABAC provides. Section 5 demonstrates how HGABAC can be
configured to emulate DAC, MAC and RBAC access control policies. Finally,
Section 6 details our conclusions and plans for future work.

2 Related Work
One of the most frequently referenced works in the ABAC literature is the eX-
tensible Access Control Markup Language (XACML) standard [7]. XACML is
an XML-based access control policy language that is notable for its support
of attribute-based policies and use in multiple access control products. While
XACML supports attribute-base access control concepts and hierarchical re-
sources, it intently lacks any kind of formal model (simply being a policy lan-
guage) and instead relies on the implementing system to apply an underlying
model of access control. Another related but distinct research area from ABAC
is attribute-based encryption (ABE), where objects are encrypted based on at-
tribute related access policies. In ciphertext-policy (CP-ABE) style ABE an
attribute-based policy is used to encrypt an object and user’s keys consist of a

Table 1. Comparison of notable models of attribute-based access control.
Logic-based
Framework
for ABAC

[18]

ABACα [8]
ABAC for

Web
Services [19]

WS-ABAC
[17]

ABMAC [12] HGABAC

Hierarchical
Hierarchical

attributes, no
user groups

√

Object
Attributes

√ √ √ √ √

User Attributes
√ √ √ √ √ √

Environment
Attributes

√ √ √ √

Connection
Attributes

Shown in
example but
not model

√

Administrative
Attributes

√

General Model
√ √ For web

services
For web
services

For grid
computing

√

Formal Model
Only models
policies and
evaluation

√
Simplistic Simplistic

√ √

Can Model
DAC, MAC, and

RBAC

Not
demonstrated

√ Not
demonstrated

Not
demonstrated

Not
demonstrated

√

set of attributes relating to that user[2, 16]. While ABE, much like XACML,
lacks any kind of formal ABAC model and has rather simplified access policies,
it does provide an interesting means of enforcing ABAC policies outside of the
security domain in which they originate.

Various works have attempted to informally describe ABAC or have taken
the first steps towards formalization. The most notable of these are summarized
and compared to our model in Table 1. Yuan and Tong[19] describe the ABAC
model in terms of authorization architecture and policy engineering and give
an informal comparison between ABAC and traditional role-based models. Shen
and Hong[17] present WS-ABAC, an ABAC model designed for web services
based around XACML. However, the model presented in this work is limited and
mostly describes an architecture to use XACML and attribute-based policies to
provide authentication for web services. Lang et al.’s ABMAC model[12] aims
to bring ABAC like access control to grid computing. While this model is based
on attribute-based policy decisions, it has several key differences in the policy
description and policy evaluation methods. This work is of note as it mentions
ABAC’s ability to represent the traditional models using a single policy language.

Wang et al.[18] propose a logic-based framework for ABAC based on logic
programming where policies are specified as “stratified constraint flounder-free
logic programs that admit primitive recursion”. While their framework intro-
duces hierarchical attributes (something lacking from other models), it is largely
focussed on the representation, consistency and performance of attribute-based
policies and their evaluation over providing a workable model of ABAC. Several
critical components required for a usable model are absent, including object at-
tributes (the only attributes considered are user attributes) and they omit any
kind of formalization of ABAC aspects outside of policies and their evaluation
(e.g. there is no mention of objects and only access control on services/operations
is considered).

Lastly, and most promising is the work by Jin et al.[8] towards a general-
ized and formalized model of ABAC with constraints for the traditional models,

Fig. 1. HGABAC components and relations using Crow’s Foot Notation to denote
cardinality of relationships. Primitive components are shown in ovals.

which they call ABACα. Their model provides a first step “to develop a for-
mal ABAC model that is just sufficiently expressive to capture DAC, MAC and
RBAC” which allows configuration of constraints on attributes at creation and
modification time as well as policies. While this work provides a sufficient basis
for new models of ABAC, it (intentionally) lacks components that would be nec-
essary for a real world implementation, such as attribute and object hierarchies,
a simplistic policy language and environment attributes.

Our model, HGABAC, is distinct from other models in several regards. Most
notably, the graph based user group hierarchy provides several new interesting
means of representing the traditional models in an ABAC framework (allowing
the hierarchy to model MAC and RBAC in an intuitive way, rather than a par-
tially ordered set as is done in ABACα[8]). These hierarchical representations
of MAC and RBAC are demonstrated in Section 5. The object group hierarchy
allows for objects to be categorized into collections of similar types of objects
(e.g. a collection of only health care record objects) and have common attributes
applied to all members of the group. This reduces the amount of manual inter-
vention required to tag similar objects with a common attribute and value pairs
and reduces the number of object attribute assignments required (as evaluated in
Section 4.2). Additionally, several efforts are made to create a model more suited
to real world application without losing descriptive power or flexibility in terms
of policies that may be enforced; a fully specified and intuitive policy language
is presented (in Section 3.2) loosely based on C style boolean statements and a
more rich selection of attribute sources is allowed. Attributes based on the user’s
current connection to the system and administrative attributes are supported
which are lacking in other models. Finally, HGABAC uses a strongly typed sys-
tem to represent attribute values (i.e. an attribute must have a predefined data
type, e.g. integer, floating point, set, etc.). This helps enforce consistency in poli-
cies and attribute value assignments as well as helping to prevent any possible
ambiguity in policies (e.g. preventing any type mismatches).

3 HGABAC Model
3.1 Formal Model

Basic Elements and Definitions: We define the base elements of the HGABAC
model, as shown in Figure 1, as follows:

– Users (U): set of current human and non-human entities that may request
access on system resources through sessions.

– Objects (O): finite set of system resources (files, database records, devices,
etc.) for which access should be limited.

– Operations (Op): finite set of all operations provided by the system that
may be applied to an object (e.g. read, write, create, delete, update etc.).

– Policies (P): set of all current policy strings following the format of our
policy language defined in Section 3.2.

– Sessions (S): set of all user sessions, such that each element, s is a tuple of
the form s = (u ∈ U, a ⊆ effective(u ∈ U), con atts) where u is the user who
activated the session, con atts is the set of connection attributes for the session
such that ∀c ∈ con atts : c = (name, values) and a is the subset of the user’s
effective attributes they wish to activate for the given session (effective(u) is
the set of all attributes a user is assigned either directly through the UAA
relation or indirectly through group membership). Policies are evaluated on
the basis of the activated attributes in a user’s session rather than the total
set of the user’s assigned and inherited attributes.

– Permissions: pairing of a policy string and an operation, such that perm =
(p ∈ P, op ∈ Op). Access to perform an operation, op, on a given object is only
allowed if there exists a permission that contains a policy, p, that is satisfied
by a given set of attributes corresponding to the requesting user’s session,
object being accessed and the current state of the connection, environment
and administrative attributes in the system. For example, a policy paired
with a read operation, “user.id = object.author”, would allow read access to
all objects for which the user is also the author.

Attributes: HGABAC defines attributes to be (name, value, type) triples where
the name is a unique identifier and value is an unordered set of atomic values of
a given type or the null set. Type restricts the data type of the atomic values
(e.g. string, integer, boolean, etc.) to a system defined data type. Attributes
represent some descriptive characteristic of the entity to which they are assigned.
For example, a user might have attributes describing their name, age, employee
id, etc., while an object might have attributes describing its author, owner, file
type, etc. The set of all attributes (TA) is divided into five subsets based on
their origin and to which entity or object they may be applied:

– User Attributes (UA): the set of attribute name, type pairs that may be
applied to users such that ∀a ∈ UA : a = (name, type) and each element of
UA has a globally unique name (i.e. there cannot be two elements with the
same name but different types). Note that value is left out of the definition of
UA as user attributes are given a set of values when assigned to users directly
or to groups (in the UAA and UGAA relations).

– Object Attributes (OA): the set of attribute name, type pairs that may
be applied to objects such that ∀a ∈ OA : a = (name, type) and each element
of OA has a globally unique name (i.e. there cannot be two elements with the
same name but different types). As with UA, value is left out of the definition
of OA as object attributes are given a set of values when assigned to objects
directly or to groups (in the OAA and OGAA relations).

– Environment Attributes (EA): the set of attribute (name, value, type)
triples that represent the current state of the system’s environment (e.g.
the current time, number of active users, etc.) such that ∀a ∈ EA : a =
(name, value, type) and each element of EA has a globally unique name (i.e.
there cannot be two elements with the same name but different types or val-
ues). What properties of a system’s environment are available as environment
attributes is left to the implementation.

– Connection Attributes (CA): the set of attribute name, type pairs that
correspond to attributes derived from and available for each connection to
the system such that ∀a ∈ CA : a = (name, type) and each element of CA
has a globally unique name (i.e. there cannot be two elements with the same
name but different types). What properties of the connection are available
as connection attributes is left as a implementation decision; however, at a
minimum some kind of unique session id should be included.

– Administrative Attributes (AA): the set of attribute (name, value, type)
triples that are defined by administrators (including automated administra-
tive tasks and programs) that rarely change and apply to all policies which
reference them such that ∀a ∈ AA : a = (name, value, type) and each element
of AA has a globally unique name. What administrative attributes are avail-
able will change at runtime based on both the implementation and actions of
administrators.

– Total Attributes (TA): set of all attributes that exist in a given system
such that TA = UA ∪OA ∪ CA ∪ EA ∪AA.

Groups: Groups and their hierarchies both simplify administration tasks, al-
lowing attributes to be assigned to groups of users or objects at once rather than
directly, and allow for more intuitive and expressive configuration possibilities
than allowed in current ABAC models (including in the task of emulating the
traditional models as shown in Section 5). Section 3.1 details the group hierarchy,
while user and object group definitions and membership are defined below:

– User Groups (UG): set of all current user groups, where each element is
comprised of a tuple, g, such that g = (name, u ⊆ U, p ⊆ UG) where name is
a globally unique identifier, u is the set of members of the group, and p is the
set of the group’s parents in the user group graph.

– Object Groups (OG): set of all current object groups, where each element
is comprised of a tuple, g, such that g = (name, o ⊆ O, p ⊆ OG) where name
is a globally unique identifier, o is the set of members of the group, and p is
the set of the group’s parents in the object group graph.

Relations: We define the following relations between the base elements, groups
and attributes:

– Direct User Attribute Assignment (UAA):
user attribute assignment relation containing user, attribute name, value triples
such that:

∀uaa ∈ UAA : uaa = (u ∈ U, att name, values)

where att name ∈ {name | (name, type) ∈ UA} and values is some set of
elements such that each element of values is of the same data type (type)
and (att name, type) ∈ UA. There may exist only one tuple in UAA for every
user, att name pair.

– Direct Object Attribute Assignment (OAA):
object attribute assignment relation containing object, attribute name, value
triples such that:

∀oaa ∈ OAA : oaa = (o ∈ O, att name, values)

where att name ∈ {name | (name, type) ∈ OA} and values is some set of
elements such that each element of values is of the same data type (type)
and (att name, type) ∈ OA. There may exist only one tuple in OAA for every
object, att name pair.

– User Group Attribute Assignment (UGAA):
user group attribute assignment relation containing user group name, at-
tribute name, value triples such that:

∀ugaa ∈ UGAA : ugaa = (group name, att name, values)

where group name ∈ {name | (name, u, p) ∈ UG} and att name ∈ {name |
(name, type) ∈ UA}. values is some set of elements such that each element
of values is of the same data type (type) and (att name, type) ∈ UA. There
may exist only one tuple in UGAA for every group name, att name pair.

– Object Group Attribute Assignment (OGAA):
object group attribute assignment relation containing object group name, at-
tribute name, value triples such that:

∀ogaa ∈ OGAA : ogaa = (group name, att name, values)

where group name ∈ {name | (name, u, p) ∈ OG} and att name ∈ {name |
(name, type) ∈ OA}. values is some set of elements such that each element
of values is of the same data type (type) and (att name, type) ∈ OA. There
may exist only one tuple in OGAA for every group name, att name pair.

Mappings: The following are the most important formal functions in the
HGABAC model.

– direct: Mapping of a user, object, or group to the attribute name, value pairs
directly assigned to it in the UAA, OAA, UGAA or OGAA relation (i.e. not
including inherited attributes or attributes from group membership). direct

is defined as:

direct(x) =


{(n, v) | (x, n, v) ∈ UAA}, if x ∈ U

{(n, v) | (x, n, v) ∈ OAA}, if x ∈ O

{(n, v) | (name(x), n, v) ∈ UGAA}, if x ∈ UG

{(n, v) | (name(x), n, v) ∈ OGAA}, if x ∈ OG

where name(x) is the name of the given group, n is an attribute name, v is a
set of valid values for that attribute and x ∈ U ∪O ∪ UG ∪OG.

– consolidate: Mapping of a set of attribute name, value pairs which may
contain multiple instances of the same name to a set of attribute name, value
pairs where each name occurs only once. Value sets are unioned together for
pairs with the same attribute name. consolidate is defined as:

consolidate(x) = {(n, v1 ∪ v2) | (n, v1) ∈ x ∧ (n, v2) ∈ x}

where x is sets of attribute name, value pairs, n is an attribute name, v1 and
v2 are sets of values.

– member: Mapping of a User or Object to the set of groups for which they
are a member. member is defined as:

member(x) =

{
{(n, u, p) | (n, u, p) ∈ UG ∧ x ∈ u}, if x ∈ U

{(n, o, p) | (n, o, p) ∈ OG ∧ x ∈ o}, if x ∈ O

where n is the name of a group, u is a subset of U , o is a subset of O, p is a
subset of UG or OG and x ∈ U ∪O.

– inherited: Mapping of a user, object or group to its set of inherited attributes
(i.e. the set of attributes assigned indirectly through the group hierarchy or
group membership). inherited is defined as:

inherited(x) = consolidate(
{(n, v) | g ∈ member(x) ∧ (n, v) ∈ consolidate(direct(g) ∪ inherited(g))}, if x ∈ U ∪O

{(n, v) | g ∈ parents(x) ∧ (n, v) ∈ consolidate(direct(g) ∪ inherited(g))}, if x ∈ UG ∪ OG

∅, if name(x) = min group
)

where parents(x) is the set of parents for the given group, n is an attribute
name, v is a set of valid values for n and x ∈ O ∪ U ∪UG ∪OG .

– effective: Mapping of a user, object, or group to their effective attributes (i.e.
all attributes inherited or directly assigned). effective is defined as:

effective(x) = consolidate(direct(x) ∪ inherited(x))

where x is a user, object or group (i.e. x ∈ U ∪O ∪OG ∪UG).

– name: Mapping of a group or attribute to its assigned name. name is defined
as: name(x) = x(1)

that is, the name is the first element of the tuple in both the case of groups
and attributes, and x ∈ OG ∪UG ∪ TA.

Fig. 2. Example user group hierarchy represented as a graph. The large bold text
denotes the group’s name, beneath which the set of directly assigned attributes is
shown.

– parents: Mapping of a group to its set of parents. parents is defined as:
parents(x) = x(3)

that is, the set of a groups where parents is the third element of the tuple in
both the case of user and object groups, and x ∈ OG ∪UG .

– authorized: P, S,O → {true, false, undef}
Function which determines if a user session passes the given policy given the
current value of the environment and administrative attributes for a given
object, where P is the set of all policies, S is the set of all sessions and O is
the set of all objects. true and false are returned as expected based on the
evaluation of the boolean policy rule; undef is returned if the policy cannot
be evaluated (e.g. an object or user attribute referred to in the policy is not
present in the attribute sets or incompatible types are compared).

Group Graph: HGABAC represents the group hierarchy as a directed acyclic
graph with each group a vertex and each edge a parent/child relation between
the groups such that the edge is directed to the parent. Additionally, all paths in
the graph must eventually end at a special min group that has no parents and
no assigned attributes. A group, g, can only have min group as a parent if it has
one and only one parent such that effective(g) = direct(g) and inherited(g) = ∅.
The parent/child relation between any two related groups is defined such that
group c is a child of group p iff:

∀(n, v1) ∈ effective(p):
∃!a ∈ effective(c): a = (n, v2) and v1 ⊆ v2

A child group must have one attribute for each effective attribute assigned to
the parent group, such that the attribute has the same name and the parent’s
attribute’s value is a subset of the child’s attribute’s value. Thus, the effective
attributes for a group, g, are calculated as:

effective(g) = consolidate(direct(g) ∪ inherited(g))

Users’ and objects’ effective attributes are calculated in a similar way, consoli-
dating the values of directly assigned and inherited attributes.

An example user group hierarchy is shown in Figure 2. In this example the
set of effective attributes of groups Undergrad and Staff are the same as their

set of direct attributes as they both inherit from min group. The group Faculty
inherits the attributes (employe level, {1}) and (room access, {MC355}) from the
group Staff such that the effective attributes of Faculty will be (employe level,
{2, 1}) and (room access, {MC320, MC355}). Similarly, the group Gradstudents
inherits attributes from both the groups Undergrads and Staff such that the set
of effective attributes for Gradstudents is {(employe level, {1}), (student level,
{1, 2}), (room access, {MC325, MC342, MC8, MC10, MC355})}.

The object group hierarchy has the same properties as the user group hier-
archy (being a directed acyclic graph, etc.), and is set up in a similar way with
a min group place holder being the ancestor of all object groups. In implemen-
tations, of HGABAC it is likely that both the user and object group graphs
could be consolidated into a single graph with the same min group and treated
similarly (e.g. with the same functions/operations) so long as constraints are
enforced so no object group may inherit from a user group and no object group
may have a user attribute assigned (and vice versa).

3.2 Policy Language

In HGABAC access control decisions are based on a boolean rule based policy
language comparing attributes and constants. The result of logical operations
(AND, OR, NOT) on ternary values (TRUE, FALSE, UNDEF) are determined
based on the AND, OR and NOT truth tables from Kleene K3 logic[9]. A policy
evaluated to UNDEF is equivalent to FALSE in terms of access control decisions
(i.e. access is denied). Comparison operations (<, >, etc.) result in TRUE or
FALSE as expected when value types are comparable (e.g. 1 < 2 results in
TRUE) and UNDEF when incomparable (e.g. “Pizza” > 3.1415). The following
definition of the policy language is given using ABNF syntax:

policy = exp [bool op policy]
/ (policy)

exp = var op var
/ [“NOT”] bool var
/ [“NOT”] “(” policy “)”

var = const / att name
bool var = boolean / att name
op = “>” / “<” / “=” / “>=” / “<=” / “! =” / “IN” / “SUBSET”
bool op = “AND” / “OR”
att name = user att name / object att name / env att name / admin att name

/ connect att name
user att name = “user.” id
object att name = “object.” id
env att name = “env.” id
admin att name = “admin.” id
connect att name = “connect.” id
atomic = int / float / string / “NULL”
const = atomic / set
boolean = “TRUE” / “FALSE” / “UNDEF”
set = “{” “}” / “{” setval “}”
setval = atomic / atomic “,” setval
id = +(ALPHA / DIGIT / “ ”)
int = [“-”] (1-9) *(DIGIT) / “0”
float = int “.” +(DIGIT)
string = DQUOTE *(%x20-21 / %x23-7E) DQUOTE

user att name and object att name correspond to attribute names in UA and OA
respectively, while env att name, admin att name and connect att name corre-
spond to attribute names in EA, AA and CA respectively. string are c-style
strings limited to printable characters. Otherwise, our policy language functions
like c-style boolean statements where the only variables are attributes.

The following are example policy strings using the HGABAC policy language:

(a) user.id IN {5, 72, 4, 6, 4} OR user.id = object.owner
(b) object.required perms SUBSET user.perms AND user.age >= 18
(c) user.admin OR (user.role = “doctor” AND user.id ! = object.patient)

Policy string a would only return true when processed by the authorized
function, if the user attribute id is present and has at least one value matching
an element in the given set {5, 72, 4, 6, 4} or has a value that is equal to a
value in object.owner. Note that the value of the attribute user.id may be a set
of multiple values, which would still pass the policy so long as ∃e ∈ user .id :
e ∈ {5, 72, 4, 6, 4} or e = object .owner . Policy string b would limit access to a
user who is at least 18 and has the set of permissions such that the object’s
required perms is a subset. Finally, policy string c demonstrates a possible use
case, where you desire to give doctors access to any medical record but their
own (as well as allow a user with the admin attribute to access any record).

4 Examples and Evaluation
4.1 Example: The Library

This section outlines how HGABAC may be used to provide access control for
a hypothetical university library. In the following use cases it is assumed that
access control is desired on four different kinds of resources provided by the
library; books, course material (textbooks, lecture notes, etc.), periodicals, and
archived records.

Case 1: Undergraduate students may check out any unrestricted book and
any course materials for a course in which they are enrolled.
Case 2: Graduate students may check out any unrestricted book or periodical
but may only check out course materials for courses in which they are a
teaching assistant or enrolled.
Case 3: Faculty may check out any book, periodical or course material as
well as any archived record from their department.
Case 4: Staff may access any resource between the hours of 8:00 and 17:00
on weekdays.
Case 5: Students enrolled in a computer science course may access periodicals
from the university network.

Group Graphs: Figure 3 shows the the user and object group hierarchies that
would be created by an administrator for the above example and cases.

User Group Graph: Object Group Graph:

Fig. 3. User and object group hierarchies to support the cases given in Section 4.1.

Group Membership: Users are assigned to one of the four user type groups
(Undergrads, Gradstudents, Faculty or Staff) as expected (i.e. undergraduate
students are members of the “Undergrads” group, graduate students to the
“Gradstudents” group, etc.). Students are also assigned membership in a user
group for each course they are enrolled in (e.g. if a student is enrolled in CS203
they would be a member of the user group “CS203”). Graduate students and
faculty also belong to a department group (for the purposes of these cases, only
a computer science department group, “CS Department”, is considered). For
example a computer science graduate student taking the course CS203 would
be a member of the “Gradstudents”,“CS203” and “CS Department” groups and
would have the effective attributes {{user type, {undergrad, grad}}, {enrolled in,
{cs course, cs203}}, {depart, {compsci}}.

Resources are assigned membership in one of the four object type groups or
one of their children as expected (i.e. books are assigned to the “Books” group
or the “Restricted Books” group, course material to one of the course object
groups (e.g. “CS101”), etc.). For example a textbook for the course CS101 would
be assigned to the “CS101” object group and would have the following effective
attributes {{object type, {course}}, {req course, {cs101}}}.

Case 1: One permission pair would be sufficient for meeting the require-
ments of the case: PERMS = {{““undergrad” IN user.user type AND ((ob-
ject.object type = “book” AND NOT object.restricted) OR (object.object type =
“course” AND user.enrolled in IN object.req course))”, check out book}} where
“check out book” is the operation that allows a resource to be read/viewed.

Case 2: In this case each graduate student would be assigned an attribute
“teaching” containing the set of courses the graduate student is assigned to as
a TA. The following permission pair combined with the pair from Case 1 would
be sufficient for meeting the requirements of the case: PERMS = {{““grad” IN
user.user type AND (object.object type = “periodical” OR (object.object type =
“course” AND object.req course IN user.teaching))”, check out book}}. As the
“Gradstudents” group is a child of the “Undergrads” group, graduate students
are granted access to unrestricted books and course materials for courses they
are enrolled in through the policy permission pair in Case 1 (as they have both
the values “grad” and “undergrad” for their user type attribute).

Case 3: As this case is less restrictive than the previous it can be met by a
straightforward permission pair: PERMS = {{““faculty” IN user.user type AND
(object.object type IN {“book”, “periodical”, “course”} OR (object.object type =
“archive” AND object.depart IN user.depart))”, check out book}}.

Case 4: For this case at least two environment attributes are required.
“time of day hour”, that represents the current hour (1 to 24) and, “day of week”,
that represents the current day of the week (1 to 7). Then the following per-
mission pair would be sufficient for meeting the requirements for the case:
PERMS = {{““staff” IN user.user type AND env.time of day hour >= 8 AND
env.time of day hour <= 16 AND env.day of week IN {2, 3, 4, 5, 6}”,
check out book}}.

Case 5: It is assumed that four connection attributes exist which represent
the user’s IP address; “ip octet 1” represents the first digit of the user’s IP ad-
dress, “ip octet 2”, the second and so on up to “ip octet 4”. It is also assumed
that all IP addresses matching the pattern “192.168.*.*” are internal addresses
on the university’s network. The following permission pair would then be suf-
ficient for meeting the requirements of the case: PERMS = {{““cs course” IN
user.enrolled in AND connect.ip octet 1 = 192 AND connect.ip octet 2 = 168
AND object.object type = “periodical””, check out book}}.

4.2 Evaluation

To evaluate whether the hierarchical user and object groups of the HGABAC
model provides an advantage over more traditional non hierarchical models of
ABAC in terms of simplifying administration and reducing complexity, we eval-
uate HGABAC based on the number of attribute and group assignments needed
to fulfill the requirements of each use case given in Section 4.1. These results
are compared to the number of attribute assignments that would be required
in a non hierarchical model of ABAC such as ABACα [8] (if ABACα supported
environment and connection attributes required to model cases 4 and 5).

Table 2 outlines the results of this comparison. The worst case (each user
is enrolled in each course and each object is of an object type such that it will
have the most attributes) is assumed as well as a constant number of courses and
departments (the same number shown in the group graphs in Figure 3). In cases
1, 2 and 3 where it is required that multiple attributes be assigned to each object
and user, HGABAC has a noticeable advantage as hierarchical groups allow
multiple attributes to be assigned with a single group membership assignment.
This also has significant advantages for administration of ABAC systems, for
example if an administrative tasks required adding an attribute to every student
in a given course, only a single additional attribute assignment to the course’s
user group would be required in HGABAC, while a new attribute assignment
for every user in the course would be required in traditional ABAC. Cases 4,
and 5 take less advantage of HGABAC’s group hierarchy, instead making use of
connection and environment attributes, and as such results in HGABAC having
a comparable performance to traditional ABAC but with a slight overhead due
to the object and user groups.

Table 2. Number of attribute and group assignments required for each case in Section
4.1. U is the number of users and O is the number of objects.

Case 1 Case 2 Case 3
HGABAC ABAC HGABAC ABAC HGABAC ABAC

User Attribute Assignments 4 4U U + 5 5U 4 2U
Object Attribute Assignments 5 2O 6 2O 8 2O
User Group Assignments 3U 0 3U 0 2U 0
Object Group Assignments O 0 O 0 O 0
Total Assignments 3U+O+9 4U + 2O 4U+O+11 5U + 2O 2U+O+12 2U + 2O

Case 4 Case 5
HGABAC ABAC HGABAC ABAC

User Attribute Assignments 1 U 1 U
Object Attribute Assignments 0 0 1 O
User Group Assignments U 0 U 0
Object Group Assignments 0 0 O 0
Total Assignments U + 1 U U +O + 2 U +O

5 Emulating Traditional Models
5.1 DAC Style Configuration

HGABAC can be configured to emulate DAC by assigning each user an “id” at-
tribute with a single value equal to a unique identifier for that user and assigning
each object an attribute for each access mode (e.g. “read” and “write”) that con-
tains the set of user ids corresponding to users who have access to that object
for the given access mode. The set of permissions are then simply: PERMS =
{(“user.id IN object.read”, read), (“user.id IN object.write”, write)}. To model
DAC style administration, an “owner” attribute maybe added to objects that
contains a single user id corresponding to the owner of the object. The permis-
sion to grant access on administrative operations is then simply: (“user.id =
object.owner”, admin operation).

5.2 MAC Style Configuration

HGABAC’s user groups allow configurations that emulate MAC style lattice
based access control. For example given the following MAC lattice:

MAC Lattice: User Group Graph:

The user group graph may be configured as follows to enable MAC with a liberal
*-property where each user is assigned only to a single read group and a single
write group. This is similar to how RBAC is configured to emulate MAC in
[13]. Each read group is assigned a single attribute named “read” and each write
group is assigned a single attribute named “write” both with a single value equal
to its clearance level (e.g. group UR is assigned the value {“UR”} for its “read”
attribute). Each object is assigned a security level attribute named “level”. The
set of permissions are then simply: PERMS = {(“object.level IN user.read”,
read), (“object.level IN user.write”, write)}. Users are limited to only activating
attributes inherited from groups of a single security level in any given session.
The following table shows direct(g) and effective(g) for each group:

g direct(g) effective(g)

min group ∅ ∅
UR “UR” “UR”

C1R “C1R” “UR”, “C1R”

C2R “C2R” “UR”, “C2R”

S1R “S1R” “UR”, “C1R”, “S1R”

S2R “S2R” “UR”, “C1R”, “C2R”, “S2R”

S3R “S3R” “UR”, “C2R”, “S3R”

TSR “TSR” “UR”, “C1R”, “C2R”, “S1R”, “S2R”, “S3R”, “TSR”

TSW “TSW” “TSW”

S1W “S1W” “TSW”, “S1W”

S2W “S2W” “TSW”, “S2W”

S3W “S2W” “TSW”, “S3W”

C1W “C1W” “TSW”, “S1W”, “S2W”, “C1W”

C2W “C2W” “TSW”, “S2W”, “S3W”, “C2W”

UW “UW” “TSW”, “S1W”, “S2W”, “S3W”, “C1W”, “C2W”, “UW”

5.3 RBAC Style Configuration

HGABAC’s user groups can also effectively enforce hierarchical RBAC style
access control by having each user group represent a role and its assigned at-

tributes, represent permissions. For example given the following role hierarchy,
the user group graph on the right may be used:

Each group is assigned a single attribute named “perms” that contains the set
of permissions that group grants. Objects are tagged with an attribute for each
access mode whose value contains the set of permissions that grant permission
to perform that access mode on the object. For example, an object may have a
“read” attribute with values p1 and p4 and a “write” attribute with values p2
and p3. The set of permissions are then simply: PERMS = {(“user.perms IN
object.read”, read), (“user.perms IN object.write”, write)} assuming the only
access modes are read and write.

If the roles in the above example role hierarchy have the following directly
assigned permissions, then the groups in the user group graph will have the fol-
lowing direct and effective values for the attribute “perms”:

Role Direct Permissions

Undergrad P1
Staff P2
GradStudent P3, P4
Faculty P5, P6
MAX ROLE ∅

g direct(g) effective(g)

min group ∅ ∅
Undergrad P1 P1
Staff P2 P2
GradStudent P3, P4 P1, P3, P4
Faculty P5, P6 P2, P5, P6
MAX ROLE ∅ P1, P2, P3, P4, P5, P6

While this enables HGABAC to emulate core and hierarchical RBAC (as defined
in the NIST RBAC standard[6]), work towards emulating the separation of duty
style constraints possible in NIST RBAC is left to future work.

6 Conclusions & Future Work

We have introduced a new model of ABAC, entitled HGABAC, that supports
boolean rule based ABAC, hierarchical user and object groups, as well as envi-
ronment, connection and administrative attributes. We show that adding user
and object groups enables greater flexibility when modelling real world situations
in addition to simplifying administration.

Future work in terms of formalizing a model of ABAC should largely consist
of extending HGABAC to support features required for real world use of ABAC
systems. Some potential additions include support for separation of duty, del-
egation, and access control for administrative functions. Expanding the policy
language defined in Section 3.2 or alternatively exploring using XACML in it’s
place could lead to greater flexibility in supported policies. To achieve the full
potential of ABAC, further automation is needed in terms of attribute assign-
ment and group membership. The addition of conditional user and object group
membership could also have interesting applications and implications that are
worthy of future research.

References
[1] D. Bell and L. Padula. Secure Computer Systems: Mathematical Foundations and

Model. Mitre, 1974.
[2] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-based en-

cryption. In Security and Privacy, 2007. SP’07. IEEE Symposium on, pages
321–334. IEEE, 2007.

[3] S. M. Chandran and J. B. Joshi. LoT-RBAC: A location and time-based RBAC
model. In Web Information Systems Engineering–WISE 2005, pages 361–375.
Springer, 2005.

[4] L. Chen and J. Crampton. Risk-aware role-based access control. In Proceedings
of the 7th international conference on Security and Trust Management, pages
140–156. Springer-Verlag, 2011.

[5] D. E. Denning. A lattice model of secure information flow. Commun. ACM,
19(5):236–243, May 1976.

[6] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli. Pro-
posed NIST standard for role-based access control. ACM Transactions on Infor-
mation and System Security (TISSEC), 4(3):224–274, 2001.

[7] S. Godik, A. Anderson, B. Parducci, P. Humenn, and S. Vajjhala. OASIS exten-
sible access control 2 markup language (XACML) 3. Technical report, OASIS,
2002.

[8] X. Jin, R. Krishnan, and R. Sandhu. A unified attribute-based access control
model covering DAC, MAC and RBAC. In Data and Applications Security and
Privacy XXVI, pages 41–55. Springer, 2012.

[9] S. C. Kleene. On notation for ordinal numbers. The Journal of Symbolic Logic,
3(4):150–155, 1938.

[10] D. R. Kuhn, E. J. Coyne, and T. R. Weil. Adding attributes to role-based access
control. IEEE Computer, 43(6):79–81, 2010.

[11] B. W. Lampson. Protection. ACM SIGOPS Operating Systems Review, 8(1):18–
24, 1974.

[12] B. Lang, I. Foster, F. Siebenlist, R. Ananthakrishnan, and T. Freeman. A flex-
ible attribute based access control method for grid computing. Journal of Grid
Computing, 7(2):169–180, 2009.

[13] S. Osborn, R. Sandhu, and Q. Munawer. Configuring role-based access control to
enforce mandatory and discretionary access control policies. ACM Transactions
on Information and System Security (TISSEC), 3(2):85–106, 2000.

[14] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access
control models. Computer, 29(2):38–47, 1996.

[15] D. Servos. A role and attribute based encryption approach to privacy and security
in cloud based health services. Master’s thesis, Lakehead University, 2012.

[16] D. Servos, S. Mohammed, J. Fiaidhi, and T.-H. Kim. Extensions to ciphertext–
policy attribute–based encryption to support distributed environments. Interna-
tional Journal of Computer Applications in Technology, 47(2):215–226, 2013.

[17] H.-b. Shen and F. Hong. An attribute-based access control model for web services.
In Parallel and Distributed Computing, Applications and Technologies, 2006. PD-
CAT’06. Seventh International Conference on, pages 74–79. IEEE, 2006.

[18] L. Wang, D. Wijesekera, and S. Jajodia. A logic-based framework for attribute
based access control. In Proceedings of the 2004 ACM workshop on Formal meth-
ods in security engineering, pages 45–55. ACM, 2004.

[19] E. Yuan and J. Tong. Attributed based access control (ABAC) for web services.
In Web Services, 2005. ICWS 2005. Proceedings. 2005 IEEE International Con-
ference on. IEEE, 2005.

