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Abstract
Attribute-Based Access Control (ABAC) is a promising alternative to traditional models of
access control (i.e. Discretionary Access Control (DAC), Mandatory Access Control (MAC)
and Role-Based Access control (RBAC)) that has drawn attention in both recent academic
literature and industry application. However, formalization of a foundational model of ABAC
and large-scale adoption is still in its infancy. The relatively recent popularity of ABAC still
leaves a number of problems unexplored. Issues like delegation, administration, auditability,
scalability, hierarchical representations, etc. have been largely ignored or left to future work.
This thesis seeks to aid in the adoption of ABAC by filling in several of these gaps.

The core contribution of this work is the Hierarchical Group and Attribute-Based Access
Control (HGABAC) model, a novel formal model of ABAC which introduces the concept of
hierarchical user and object attribute groups to ABAC. It is shown that HGABAC is capable of
representing the traditional models of access control (MAC, DAC and RBAC) using this group
hierarchy and that in many cases it’s use simplifies both attribute and policy administration.
HGABAC serves as the basis upon which extensions are built to incorporate delegation into
ABAC.

Several potential strategies for introducing delegation into ABAC are proposed, categorized
into families and the trade-offs of each are examined. One such strategy is formalized into a
new User-to-User Attribute Delegation model, built as an extension to the HGABAC model.
Attribute Delegation enables users to delegate a subset of their attributes to other users in an
“off-line” manner (not requiring connecting to a third party).

Finally, a supporting architecture for HGABAC is detailed including descriptions of ser-
vices, high-level communication protocols and a new low-level attribute certificate format for
exchanging user and connection attributes between independent services. Particular emphasis
is placed on ensuring support for federated and distributed systems. Critical components of the
architecture are implemented and evaluated with promising preliminary results.

It is hoped that the contributions in this research will further the acceptance of ABAC
in both academia and industry by solving the problem of delegation as well as simplifying
administration and policy authoring through the introduction of hierarchical user groups.

Keywords: Attribute-Based Access Control, ABAC, hierarchy, delegation, access control
model, HGABAC, Hierarchical Group and Attribute-Based Access Control, HGAA, Hierar-
chical Group Attribute Architecture
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Summary for Lay Audience
Traditionally, access control policies have been based on the direct assignment of permis-

sions or roles to users based on the user’s identity. For example, Alice is granted permission
to use the printer or Bob is grated the role of “Manager” and mangers can view employee
salaries. Attribute-Based Access Control (ABAC) is a new take on access control that is iden-
tityless (i.e. the identity of the user is unknown at the time of policy creation). Instead, ABAC
bases access control decisions on the attributes of the users (e.g. age, year level, certificates,
etc.), the environment (e.g. date/time, number of users on-line, etc.) and objects being access
(e.g. author, date created, security level, etc.). These attributes are related by an access control
policies, for example, “if the user is 18 years old or older they can read a book with an adult
rating”.

Basing access control decisions on attributes allows for increased flexibility when creating
policies and enables new users to be placed into the system without assigning permissions or
roles manually beforehand. However, as ABAC is relatively new, there are a number of issues
that must be resolved before ABAC can see wider acceptance outside of academia. These
issues include, but are not limited to, a lack of a delegation model, no support for user and
object groups and no single agreement on a standard formal model of ABAC. The goal of this
thesis is to produce potential solutions to these problems and thus aid in the adoption of ABAC.

A new ABAC model, entitled Hierarchical Group and Attribute-Based Access Control
(HGABAC), is introduced which adds user and object groups to ABAC. It is shown that these
groups can help both simplify administration of ABAC systems and allow HGABAC to be
backwards compatible with traditional identity based policies. A delegation model is added
that allows users to delegate a number of their attributes to other users. This delegation ability
is important in many real-world scenarios including continuing business functions when an
employee is absent. Lastly, a supporting architecture is provided to fill in the gaps and act as a
bridge between the theoretical HGABAC model and a real-world implementation.
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Chapter 1

Introduction

Reprint Notice

The background information (Section 1.2) given in this chapter has been published in
ACM Computing Surveys by the author as part of:

Daniel Servos and Sylvia L Osborn. Current research and open problems in attribute-based
access control. ACM Computing Surveys (CSUR), 49(4):65, 2017
https://doi.org/10.1145/3007204

© 2017 Association for Computing Machinery, Inc. Reprinted by permission. Copyright
permission and license can be found in Appendix A.1.

1.1 Motivation

The early 2010s saw rise to a popular trend of moving computing infrastructure from traditional
localized equipment to decentralized service-orientation or cloud-based platforms. While “the
cloud” offered much potential for “on demand” dynamic scaling of applications and resources
through virtualization, it created a need for new models of access control to match the remote
and agile nature of the computing environment. Attribute-Based Access Control (ABAC) was
suggested as a possible solution to providing a unified, but flexible access control policy for
this new paradigm [Hur and Noh 2011; Lang et al. 2009; Yuan and Tong 2005]. In more recent
years, interest has grown in applying Attribute-Based Access Control (ABAC) to emerging
computing areas such as Internet of Things (IoT)[Bhatt 2018], smart connected vehicles [Gupta
et al. 2019], health care[Servos 2012], big data[Gupta et al. 2018] and other less traditional
distributed systems.

ABAC, unlike more traditional models of access control, allows for the creation of access
policies based around the existing attributes of the users and objects in the system, rather than
the manual assignment of roles, ownership or security labels by a system administrator. There
are several situations, including cloud computing, where this would be beneficial, removing
the need for manual intervention when authorizing users for certain roles or security levels;
simplifying administration in complex systems with a large number of users as well as creating
the possibility of automating access control decisions for remote users from foreign systems.
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2 Chapter 1. Introduction

While some research has focused on adding attribute-like concepts to existing models of
access control[Al-Kahtani and Sandhu 2002, 2003], little work has been successful in creating
a generally agreed upon formalized model or standardization of “pure” Attribute-Based Ac-
cess Control. This shortage of formalized foundational ABAC models is limiting both access
control research (forcing attribute related work to be highly informal and ill defined) and indus-
try (causing a lack of ABAC standardization needed for implementing secure attribute-based
systems). This problem has not gone unnoticed by government and standards organizations,
leading to calls for increased development of ABAC systems and research towards founda-
tional models by the Federal Chief Information Officers Council[CIO Council 2011], the Na-
tional Institute of Standards and Technology (NIST)[Hu et al. 2013], and even as part of the
White House’s National Strategy for Information Sharing and Safeguarding[Office of the Press
Secretary 2012].

A formalized foundational model of ABAC will open new research opportunities in access
control as well as lead the way to standardization for industry use; however, ABAC’s relative
infancy compared to the traditional models (namely MAC, DAC, and RBAC) leads to a num-
ber of other related research problems (discussed in Chapter 2 Section 2.4). These problems
include but are not limited to: lack of a delegation and administration model, limited work
towards hierarchical models, questionable auditability and the complexity of enforcing sepa-
ration of duty constraints. Solving these problems is critical to support the adoption of ABAC
systems in real world scenarios and move beyond the theoretical level.

1.2 Background

1.2.1 Basic Definitions
The following are commonly used definitions in access control research and the remainder of
this document:

Object: A logical object on which access control is desired (sometimes referred to as a re-
source). Examples include but are not limited to: file system objects, databases, physical
resources (e.g. printers, scanners, doors, etc.), network resources, other access control enti-
ties (e.g. subjects or roles) and physical objects (e.g. library book).

Subject: An entity requesting access to the system (also referred to as a user or requestor).
This may be the actual human user of the system, a session or process that performs requests
on the user’s behalf or a completely automated non-human program or process (a non-
person entity).

Operation: A process, command, or program that may be performed on an object (also called
actions or access modes). Examples include but are not limited to; read, write, delete,
execute (e.g. run a program), grant (grant ownership or permission on), use (e.g. use a
printer or open a door) or a custom operation like checkout a book (e.g. for a system granting
permission to checkout library books).

Permission: The authorized actions in a system that are commonly defined as a paring of an
operation with the object it is allowed to be performed on. Permissions are also commonly
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referred to as privileges, rights, authorizations or entitlements but may have slightly
differing definitions in some works.

Policy: (or Security Policy, Access Control Policy, Access Policy, Policy Rule, etc.) are the
high level rules system administrators put in place to govern allowable behaviour. These
policies may take the form of written rules in well defined policy languages (e.g. XACML)
or more abstract configurations such as defining and assigning roles in RBAC.

Administration: The act of creating, defining, editing, configuring or maintaining access con-
trol policies.

Authentication: The act of verifying that a subject is actually who they claim to be (normally
on the basis of some credentials provided by the subject).

Credential: Proof of a subject’s identity, qualification, competence, or authority. Can take the
form of a user name, password pair, signed certificate issued by some authority, verifiable
statements made by other subjects, etc.

Identity: A unique identifier or aspect of a subject (e.g. a user’s full name, employee ID, SIN,
etc.). This is distinct from common attributes of a subject that are not necessarily unique
on their own (e.g. age, role, job title, student type) but may form a unique identity when
combined.

Attribute: A trait or aspect of an access control entity, the environment or any part of the sys-
tem for which access control is being applied. Possible subject attributes include age, name,
home address, or job title. Possible object attributes include author, creation date, last mod-
ification date, or patient (for a health record). Possible environment attributes might include
current time, day of the week, number of users logged in, or free space. See Section 1.2.3
for more details.

Constraint: A limitation or restriction placed on part of an access control system. For exam-
ple, a constraint may restrict a user from having both permissions required to create a loan
application and approve a loan application or a system may be constrained to only allow a
fixed number of roles to be activated in a single session. Additionally, constraints can be
made based on the current state of the system’s environment (e.g. only allow role/permis-
sion activation during set times or days of the week); however, this should be considered
distinct from the permission granting policies in ABAC that grant permissions based on the
current value of attributes of the environment and other access control entities (i.e. one is
restricting permissions and one is granting permissions).

Group: A collection of access control entities that may be assigned or related to other entities
as a whole. For example, an object group might be a collection of resources that may be
paired with a single operation to form a permission containing multiple objects.

Role: A set of permissions assigned together as a group to other access control entities (namely
users). Often access control roles are representative of real roles or job titles found in an
organization and may have a similar hierarchical representation. Used in RBAC and hybrid
ABAC models, see Section 1.2.2.3.
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Session: A logical construct, often only temporary in existence, that makes access control
requests on a system in place of a user. In many models of access control a session will only
be granted a subset of a user’s permissions in an effort to help enforce the principle of least
privilege.

Definitions with multiple corresponding words (e.g “user” and “subject” or “object” and “re-
source”) are used interchangeably in this document and refer to the above definitions unless
otherwise noted.

1.2.2 Traditional Access Control
1.2.2.1 Discretionary Access Control

In Discretionary Access Control (DAC)[Lampson 1974; Griffiths and Wade 1976], access is
granted to users directly via an access matrix[Harrison et al. 1976]. In most cases this matrix,
A, takes the form of A[si, o j] = mi, j where si is a subject from the set of all subjects that have
access to a given system, o j is an object from the set of all objects or resources protected by
the system and mi, j is the set of access modes under which the subject may access the object
(e.g. the “read” access mode might grant the subject permission to view the contents of the
object). Granting permissions on an object (i.e. assigning access modes to the user, object pair
in the access matrix) is left to the discretion of the object’s “owner”, either an individual user
or group that has been previously assigned ownership of the object (often represented through
an “owns” access mode in the access matrix and assigned to the initial creator of an object by
default).

While the simplicity of this model makes it ideal for cases like file system access control
in operating systems (e.g. Unix file permissions), it is insufficiently flexible or constrainable
for systems with more complex access control requirements. In many cases it is desirable
that access control decisions are centrally controlled and made on the basis of organizational
policies or structure, rather than left to the discretion of individual users of the system. In terms
of flexibility, DAC lacks the expressiveness to deal with more complex access policies that
occur in real world organizations such as “only accountants can access client files”, “only users
with top security clearance can read documents labelled top secret” or “tellers can only make
changes to client’s accounts during week days from 9AM to 5PM”. Instead, DAC relies upon
the manual tagging of object,subject pairs with access modes by individual owners, making it
unsuitable for such scenarios.

1.2.2.2 Mandatory Access Control

Unlike DAC, Mandatory Access Control (MAC) enforces centrally controlled access policies
defined not at the discretion of the user but by an access control administrator. This facilitates a
single organization-wide security policy that applies to all subjects including the processes they
execute. The Bell-LaPadula model[Bell and LaPadula 1973] is perhaps the most well known
MAC model in the access control literature, which takes a lattice-based approach to enforcing
multilevel security using security labels. In the Bell-LaPadula model, subjects and objects
are tagged with clearances and security levels respectively, both comprised of a classification
(e.g. “Top Secret”), C, and a set of categories (e.g. {“NSA, NATO, CIA”}), S , such that labels
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U

Figure 1.1: Example security lattice in the Bell-LaPadula[Bell and LaPadula 1973] model.

are defined as L = (S ,C). Classifications are totally ordered (e.g. “Top Secret” >“Secret”
>“Classified” >“Unclassified”) and a security level, L1 = (S 1,C1), is considered to dominate
another level, L2 = (S 2,C2), if and only if C1 ≥ C2 and S 2 ⊆ S 1. This partial ordering of
security levels is represented by a mathematical lattice such as the example lattice shown in
Figure 1.1.

Access control is established through the following “Simple Security” read property and
either a “Liberal *” or “Strict *” write property (where L(x) denotes the secularity label of the
access control entity):

Simple Security Property: A subject, s, may read a given object, o, if L(s) ≥ L(o). That is
to say that a subject may read the contents of an object if their security clearance dominates
the security level of the object, restricting users to reading at their own level or lower in the
lattice.

Liberal *-Property: A subject, s, may write to a given object, o, if L(s) ≤ L(o). That is to say
that a subject may write to an object if the subject’s clearance is dominated by the security
level of the object, restricting users to writing to their own level or higher in the lattice.

Strict *-Property: A subject, s, may write to a given object, o, if L(s) = L(o). That is to say
that a subject may write to only objects of an equivalent security level.

If the example lattice from Figure 1.1 is used, a subject operating at a S 1 clearance level
could read only objects labelled S 1, C1 or U (all dominated by S 1) and write only to objects
labelled S 1 or TS (assuming the liberal *-property is in use). If instead, the strict *-property is
used, such a subject would be limited to writing to only objects of the same security level (S 1).
In most systems, users are permitted to operate at any clearance level so long as that clearance
level is dominated by the clearance label assigned to the user.

Although this style of MAC satisfies many of the requirements of the high security systems
for which it was originally designed (namely for military and government use), it is often
inadequate for more open and less static environments. The Bell-LaPadula model requires all
subjects and objects to be both known and tagged with security levels before system creation
and gives few options for reconfiguring the system at run time. While policies based on security
levels are possible, more fine grained policies like “objects labelled Top Secret can only be
accessed from a secure network” are still not possible using the model alone.
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Figure 1.2: NIST RBAC Model[Ferraiolo et al. 2001].

1.2.2.3 Role-Based Access Control

In Role-Based Access Control (RBAC)[Ferraiolo et al. 2001; Nyanchama and Osborn 1999],
access control decisions are based on a user’s assigned role in an organization rather than
directly assigned permissions or security labels. Roles are assigned permissions (object, op-
eration pairs) that grant access to perform a specified operation on a specific object (or set of
objects) and users are assigned to roles that represent their position in an organization. Users
are able to activate one or more roles for which they are a member in a given session and all ac-
cess decisions for that session are derived from the resulting set of permissions obtained from
the active roles. One of the most accepted models of RBAC is the NIST RBAC model[Ferraiolo
et al. 2001], shown in Figure 1.2, that includes a role hierarchy and constraints to enforce Sep-
aration of Duties (SoD). In the NIST model, the role hierarchy allows parent roles to inherit the
permissions of their children and child roles to inherit the users of their parents. This allows
RBAC to further model the hierarchical structure of most organizations. SoD constraints are
divided into static SoD, where subjects are prohibited from being assigned conflicting roles,
and dynamic SoD, where subjects are prohibited from activating conflicting roles in the same
session.

While RBAC provides a more generalized model than MAC or DAC (and in fact can emu-
late both models effectively [Osborn et al. 2000]), it falls short in cases where users and their
respective roles in the system are poorly defined or even unknown before access requests take
place. As RBAC requires the assignment of users to roles (often manually) before users may
access a system, it is unsuited for domains in which user’s identities may be unknown or only
determined at the time of access (such is commonly the case in service oriented architectures
like web service based implementations). Additionally, access control polices in basic RBAC
models (like the NIST model) are mostly limited to form of “if a user is assigned a role X
they are granted the set of permissions Y”; however, this is insufficiently flexible for many real
world scenarios. For example, a bank may only permit an employee with the role “teller” to
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access client accounts during set times of the day and week or a hospital may wish to constrain
a user with the role “patient” to only viewing medical records in which they are described
as the patient. Both of these cases would be difficult, if not impossible, to model in NIST
style RBAC. While many extensions to RBAC do exist, which expand the flexibility of access
control polices (such as those described in Chapter 2 Section 2.3.2) they often only concen-
trate on adding a single new feature (e.g. time or location based policies, parameterized roles,
automated role assignment, etc.) rather than creating a new, more generalized model.

1.2.3 Attribute-Based Access Control
Attribute-Based Access Control (ABAC) is an emerging form of access control that is starting
to garner interest in both recent academic literature and industry application. While there is
currently no single agreed upon model or standardization of ABAC, there are commonly ac-
cepted high level definitions and descriptions of its function. One such high level description is
given in National Institute of Standards and Technology (NIST)’s recent publication, a “Guide
to Attribute-Based Access Control (ABAC) Definition and Considerations”[Hu et al. 2013]:

Attribute-Based Access Control: An access control method where subject requests
to perform operations on objects are granted or denied based on assigned at-
tributes of the subject, assigned attributes of the object, environmental conditions,
and a set of policies that are specified in terms of those attributes and conditions.

Rather than basing access control decisions on a user’s identity like the traditional methods,
ABAC bases access control around the attributes of access control entities. These attributes are
often classified into one of the following categories:

User Attributes: Attributes of the subjects of the system. May include attributes like age,
name, office number, job title, role, security clearance, home address, date hired, trust level
(e.g. how trusted the user is by the system), etc.

Object Attributes: Attributes of the resources of the system. May include attributes about
the meta-data related to the object such as author, date created, last modified, size, file
type, security level, etc., or the contents of the object such as patient name (e.g. for health
records), student number (e.g. for student records), title of chapter 1, etc.

Environmental Attributes: Attributes derived from the current state of the system’s environ-
ment. For example, current time, day of the week, number of users logged in, free space,
CPU usage, etc.

Connection Attributes: Attributes that only apply to the current session of a user. For exam-
ple, IP address, physical location (e.g. for mobile systems), session start date/time, current
session length, host name, number of access requests made, etc.

Administrative Attributes: Configuration attributes that apply to the whole system and are
either manually set by an administrator or by some automated process. These could include
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Figure 1.3: Core ABAC model. Thin solid arrows denote many-to-many relations, thick solid lines
denote relation with policy engine and doted lines denote information used by the policy engine to
evaluate a given policy. Ovals represent ABAC model elements.

a threat level (e.g. different polices could be used depending on if the system was likely to
be attacked or not), minimum trust level (e.g. the minimum amount of trust required for a
user to access the system), maximum session length (e.g. the maximum allowable length of
a session), etc.

Ideally, these attributes are all properties of the elements in the system and do not need to be
manually entered by administration (e.g. many of the attributes about an object come from
its meta-data). Access policies can be created using policy languages, limiting access to cer-
tain resources or objects, based on the result of a Boolean statement comparing attributes, for
example user.age >= 18 OR object.owner == user.id. This allows for flexible en-
forcement of real world policies, while only requiring knowledge of some subset of attributes
about a given user (as opposed to knowing their identity and to what roles or permissions they
have been manually assigned).

1.2.3.1 Core ABAC Model

This section gives a description of a simplified ABAC model based on common elements found
in most ABAC models. While each ABAC model tends to formalize the elements of ABAC in
a slightly different way, the following are the most common elements of an ABAC system and
are present in most models:

Users (U): The set of all users that may access the system. Note that this set may not nec-
essarily be finite as not all users are known at creation time (something that is common in
service oriented architectures and systems involving information sharing across organiza-
tional boundaries).

Objects (O): The set of all objects protected by the system.
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Attributes (A): The set of all attributes (given by a unique name) in the system. In some
models, attributes also have a type associated with them or are subdivided into categories
based on the access control entity to which they can be applied.

Permissions (PERM): The set of all possible permissions that may be granted to users. In
some models, permissions consist of object, operation pairs similar to permissions in RBAC,
but this is not necessarily required. In other models permissions are policy and operation
pairs, that grant access to execute the operation on any object that fulfils the policy.

Policies (P): The set of all policies that govern access in the system. Normally these policies
are written in a policy language and in some way related to permissions they grant.

These basic elements are assigned attributes and related through the following relations (shown
in Figure 1.3):

Users Attribute Assignment (UAA): The assignment of attributes onto users. This may take
the form of {a ∈ A, u ∈ U, values} ∈ UAA, that is to say that each element of UAA is
a triple containing an attribute name from the set of attributes (A), a user from the set of
users (U) and a set of values assigned to the given user and attribute pair. For example, if
a user, u1, was assigned an “age” attribute with the value of 28, the entry in UAA would
look like {“age”, u1, {29}}. Alternatively, if an user, u2, was assigned a “supervises” attribute
that contains the set of other users they supervise (in this case u1 and u3), the entry in UAA
would look like {“supervises”, u2, {u1, u2}}.

Object Attribute Assignment (OAA): The assignment of attributes onto object. This may
take the form of {a ∈ A, o ∈ O, values} ∈ UAA, and works in the same way as UAA but with
objects.

Policy Permission Relation (PPR): The relationship between policies and the permissions
they grant. This may take the form of {p ∈ P, perm ⊆ PERM} ∈ PPR. This assignment
is often formulated differently or not at all in many models depending on how their policy
language works (e.g. the language itself may specify the permission set granted).

Policies in the PERM set are commonly Boolean statements involving attributes and constants
such as user.age >= 18 (grants access if the user is 18 or more years of age) or user.id ==

object.author (grants access if the user is the author of the file). When an access request is
made by a user it is evaluated against the set of policies (P) given the assigned attributes of the
user making the request and the object being requested. In many models, access requests are
not conducted directly by the user but indirectly through a session that may contain a subset of
the user’s attributes. A comprehensive review of existing ABAC models is given in Chapter 2.

1.2.3.2 Policy Language Standards

A critical component of ABAC, although not strictly part of the ABAC model, is the access
control policy language used to define policy rules for a system. These languages, while not
models in them selves (as is sometimes erroneously implied), are either generic access control
language standards (such as XACML) or languages created specifically for use with a single
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model. eXtensible Access Control Markup Language (XACML)[Godik et al. 2002], a standard
created by the Organization for the Advancement of Structured Information Standards (OA-
SIS), is one of the most frequently referenced works in ABAC literature. XACML is a XML
based access control policy language that is notable for its support of attribute-based policies
and used in multiple access control products. Similarly, Security Assertion Markup Language
(SAML)[Hughes and Maler 2005], also developed by OASIS, provides a standardized markup
language and protocol for exchanging authorization and authentication information between
parties which supports attributes for authentication.

1.2.3.3 Attribute-Based Encryption

Another related but distinct research area from ABAC is Attribute-Based Encryption (ABE),
where objects are encrypted based on attribute-based access policies. ABE mainly consists
of Key-Policy Attribute-Based Encryption (KP-ABE)[Goyal et al. 2006] or Ciphertext-Policy
Attribute-Based Encryption (CP-ABE)[Bethencourt et al. 2007; Servos et al. 2013] based en-
cryption ciphers. In KP-ABE an object is encrypted with a set of attributes related to the object
which must pass a policy embedded in a user’s key for decryption to proceed. CP-ABE is the
reverse of KP-ABE, using an attribute-based policy to encrypt an object and having a user’s key
consist of a set of attributes relating to that user. While ABE, much like XACML and SAML,
lacks any kind of formal ABAC model and has rather simplified access policies, it does provide
an interesting means of enforcing ABAC policies outside of the security domain they originate
in. There are several examples of ABE being used for such in recent literature[Hur and Noh
2011; Wang et al. 2010; Servos 2012; Yu et al. 2010], particularly for securing web and cloud
based services.

1.3 Goals & Contributions

The main purpose the research contained in this thesis is to create a formalized model of
ABAC based in set theory which can act as a foundational model for both future research
and standardization of ABAC for industry applications. Such a model would include both
informal and formal definitions, a policy language for ABAC, example implementation and
several previously overlooked aspects of ABAC, including delegation, support for hierarchi-
cal access control structures, an encompassing architecture for real world use and a set of
suporting protocols and formats for dealing with attributes. As a first step towards this goal,
a new model of hierarchical ABAC, entitled Hierarchical Group and Attribute-Based Access
Control (HGABAC), was created (Chapter 3 and was presented in the refereed Symposium on
Foundations & Practice of Security (FPS) conference (published in springer lecture notes in
computer science[Servos and Osborn 2014]). This work presents a formal model of ABAC
that is notable in part due to the addition of hierarchical user/object groups that allow for more
simplistic and flexible administration of access control policies. This contribution serves as a
foundational model upon which extensions and frameworks are built to support delegation and
administrative functions in later chapters (Chapters 5 and 6).
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1.3.1 Goals

The main goal of the research contained in this thesis is to provide potential solutions to a
number of open problems identified in ABAC research (as identified in Chapter 2 Section 2.4).
More specifically the following issues are addressed:

Hierarchical ABAC: At the time of creating the HGABAC model (Chapter 3), no “pure”
models of ABAC supported hierarchical concepts similar to those found in modern RBAC
models. One aim of the HGABAC model is to introduce hierarchical concepts into ABAC
via attribute user and object group hierarchies in which attributes and their assigned values
are inherited from parent groups. This aids in both administrative tasks and in increasing
the flexibility of possible ABAC policies (including allowing for new methods of emulating
the traditional models). HGABAC formalizes the concepts of hierarchical attributes groups
and demonstrates their versatility in modelling DAC, MAC and RBAC.

Representing the Traditional Models: A key feature of next generation access control mod-
els is the ability to emulate policies of existing models. Just as RBAC was shown to be
capable of representing and enforcing DAC and MAC based policies[Osborn et al. 2000],
the next generation of ABAC models must have the same capability (i.e. enforcing DAC,
MAC and RBAC policies). While some work towards representing the traditional models
in ABAC has been conducted (namely that done by X. Jin et al.[Jin et al. 2012]), there is
still much left to be done in way of exploring and evaluating alternative representations.
HGABAC takes a further step by exploring representation using hierarchical groups (as
opposed to attributes that contain partially ordered sets as in [Jin et al. 2012]).

Support for Distributed Systems: Attribute-based policies have a number of advantages in
distributed environments, particularly in cases where authority is federated among distinct
security domains with their own users, policies and resources that act somewhat indepen-
dently. In such cases, one domain may have little or no knowledge of the users or their
roles in another domain and limited ability to communicate with other domains directly
(e.g. due to communication bottlenecks or parts of systems being accessible only in an
“off-line” manner). The identityless nature of ABAC is advantageous in such scenarios as
users can be assigned permissions via their attributes and properly placed in the foreign
domain with no knowledge of the user’s identity or role in their home domain. While this
aspect of ABAC is one of its strongest features, many ABAC models, frameworks and ar-
chitectures assume that all services are on a single local system or at least within a single
security domain (with all components being trusted and able to freely communicate). One
key goal of this research is to ensure the proposed ABAC model and supporting architec-
tures are compatible with distributed and federated systems. In part, this entails: having a
name-space that uniquely identifies access control elements (attributes, users, etc.) across
independent domains; securely sharing users, attributes and permissions between separate
security domains; limiting required communication between domains to avoid bottlenecks
and scalability issues; and providing a means of authenticating with services in an “off-line”
manner (i.e. without having to connect to a third party). These issues are largely addressed
in Chapter 5 and updated to support delegation in Chapter 6.
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Supporting Architecture: In many cases, an ABAC model is not enough on its own to imple-
ment a comprehensive real-world access control system. A support architecture, protocols
and system for storing and sharing attributes is required to answer questions like “who as-
signs the attributes?”, “how are attributes shared with each party?”, “how does the user
provide proof of attribute ownership?”, “where and how are policies evaluated?”, “how
will the model scale in real-world use?”, etc. Chapter 5 presents Hierarchical Group At-
tribute Architecture (HGAA), a potential answer to these questions.

Delegation Model: At present, little research has be done towards creating a formal model of
delegation for ABAC. This commonly desired access control feature is critical for ABAC
acceptance but must be carefully considered to avoid introducing new security and privacy
issues. Potential strategies for creating such a model are discussed in Chapter 4 in addition
to security and privacy implications of each method. One strategy, User-to-User Attribute
Delegation, is formalized in Chapter 6 and a support architecture is outlined.

1.3.2 Contributions
There has been a growing demand from both government and industry for more research and
development into ABAC systems that demonstrates both the need for and significances of such
works. The Federal Identity, Credential, and Access Management (FICAM) Roadmap and
Implementation Plan v2.0[CIO Council 2011] published by the Federal Chief Information
Officers Council in the United States recommends ABAC for “promoting information shar-
ing between diverse and disparate [federal] organizations”. This recommendation is further
strengthened by the National Strategy for Information Sharing and Safeguarding[Office of the
Press Secretary 2012] making the implementation of the FICAM roadmap a priority across
federal networks in all security domains. This has lead the National Institute of Standards and
Technology to start initiatives towards formalizing and standardising ABAC, including their
recent guide to ABAC[Hu et al. 2013]. Despite this demand and a number of efforts to create
ABAC models, there is still no single standardized description of ABAC beyond some com-
monly agreed upon high level definitions.

While a large number of ABAC models have already been developed (as evident by the
extensive list of models discussed in Chapter 2), the research contained in this thesis is novel
in a number of ways. Firstly, seldom discussed aspects of ABAC such as hierarchy, groups,
delegation, function in “off-line” and distributed environments, and supporting architectures
and frameworks are developed that have been largely ignored in recent literature. These as-
pects are critical for real world adoption of ABAC systems and are required for providing a
complete access control solution. Secondly, while there are many ABAC models targeted at
specific use-cases (e.g. cloud computing, web services, etc.), there are relatively few that are
“pure”, generic, formal and complete. Only two of the reviewed models in Chapter 2 (exclud-
ing HGABAC) would meet these criteria, one of which (ABAM[Zhang et al. 2005]), is not
an identityless solution. Such a model is required to serve as a foundational model for ABAC
research, much like how the NIST RBAC model[Ferraiolo et al. 2001] provided a generic
formalized model to enable both RBAC research and industry use. The proposed HGABAC
model in Chapter 3, could potentially be a first step towards such a foundational model and has
already seen some acceptance and use by other researchers (as discussed in Section 7.1).
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1.4 Outline & Overview

The remainder of this thesis is divided into five chapters following the integrated-article for-
mat1. Chapters 2 to 5 contain content from articles published by the author during the course of
researching this topic with minor additions, corrections and connecting information. A state-
ment of co-authorship can be found at the beginning of this thesis (page iv). Article content
is reproduced with the permission of the appropriate copyright holders (details given in Ap-
pendix A). An overview of each chapter follows:

Chapter 2: Current Research and Open Problems in Attribute-Based Access Control

Chapter 2 provides a literature review of current (at the time of writing) research in the area
of ABAC. A taxonomy of ABAC models is presented that aids in classifying and organiz-
ing the many ABAC models, frameworks and architectures that are frequently proposed in
recent publications. Open problems for ABAC not yet addressed by the literature to date
are identified and possible directions for future work related to these problems are given.
A number of these open problems, namely lack of foundational models (Chapter 2 Sec-
tion 2.4.1), representing the traditional models (Chapter 2 Section 2.4.2), need for hierar-
chical ABAC (Chapter 2 Section 2.4.3), delegation (Chapter 2 Section 2.4.6), and attribute
storage and sharing (Chapter 2 Section 2.4.7) form the motivation for the research detailed
in the subsequent chapters.

Chapter 3: HGABAC: Towards a Formal Model of Hierarchical ABAC

Chapter 3 outlines a new formal model of ABAC, entailed Hierarchical Group and Attribute-
Based Access Control (HGABAC), that incorporates hierarchical user and object attribute
groups. A novel concept not yet seen in the ABAC literature at the time. Additionally, an
accompanying attribute-based policy language, HGPL, is introduced as well as a new type
of attribute, the “administrative attribute”. It is shown that policies supported by HGABAC
and HGPL are flexible enough to emulate and represent the traditional access control models
(MAC, DAC, and RBAC) and that the new hierarchy can reduce complexity and simplify
administration of attributes. The ABAC model and policy language presented in this chapter
forms the basis for the work in subsequent chapters, each chapter adding to the capabilities
of the HGABAC model, or developing supporting architectures and features for HGABAC.

Chapter 4: Strategies for Incorporating Delegation into ABAC

Chapter 4 discusses potential strategies for incorporating delegation into ABAC, namely
HGABAC. Possible strategies are created by combining different “delegation components”
(different delegators, delegatees, and delegatable components) to form unique theoretical
delegation models. Each strategy is evaluated and categorised based on shared weaknesses
and advantages. Detailed examples of how each category of delegation strategy would work
but formalizing and implementation of the models is left to future work (e.g. the model of
User-to-User Attribute Delegation defined in Chapter 6).

1As described by the Western Graduate & Postdoctoral Studies regulations and requirements for thesis content
(Regulation 8.3.1).
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Chapter 5: HGAA: An Architecture to Support HGABAC

Chapter 5 seeks to fill in the gaps left by the HGABAC model and provide a supporting
architecture to implement HGABAC based systems. An access control architecture, en-
titled Hierarchical Group Attribute Architecture (HGAA), is proposed which defines how
Attribute Stores, Attribute Authorities, User Services, Policy Authorities, and Users inter-
act and securely share attributes, policies and other HGABAC information. Special care is
taken to ensure the architecture will support distributed and federated security domains and
that authentication can happen in an “off-line” manner (i.e. without having to connect to
a third party once an Attribute Certificate has been issued). Additionally, an update to the
HGPL policy language is presented (Chapter 5 Section 5.4.5), a namespace for uniquely
identifying attributes and other HGABAC elements is introduced (Chapter 5 Section 5.4.1),
as well as a cryptographically secure Attribute Certificate document format (Chapter 5 Sec-
tion 5.4.3) used for sharing user attribute information between services.

Chapter 6: Incorporating Off-Line Attribute Delegation into HGABAC

Chapter 6 builds on the work in Chapters 3 to 5 to create a formal model of User-to-User
Attribute Delegation for HGABAC first proposed as one of the strategies in Chapter 4.
Extensions to the HGABAC model are proposed to support the new delegation model and
a supporting delegation framework (Chapter 4 Section 6.4) is introduced that updates the
HGAA architecture and Attribute Certificate for delegation.

Chapter 7: Conclusions and Future Work

Lastly Chapter 7 gives concluding remarks, outlines directions for future research and pro-
vides a “reverse literature search” detailing the impact this work has had to date in the field
of ABAC.
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2.1 Introduction & Methodology
This chapter provides a review of ABAC research as of October 20th 2014 (the date the survey
was conducted) with a focus on models that incorporate attribute-based concepts. A novel tax-
onomy of current ABAC efforts is presented (in Section 2.2) and used to classify and organize
each work.

A structured approach was used to locate peer-reviewed literature related to ABAC for
the purposes of this literature survey. Searches for refereed journal papers, conference papers
and dissertations were conducted using the Google Scholar1 and DBLP2 search engines with
queries relating to ABAC (e.g. searching for paper titles containing “attribute-based access
control”, “ABAC”, “attribute-based”, etc.). Articles were then manually reviewed for inclu-
sion/exclusion based on the following criteria:

1http://scholar.google.ca
2http://dblp.org/search/
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Inclusion Criteria:

Papers and articles discussing models, implementations, frameworks and architectures in-
volving ABAC were included. Works dealing with attribute-based policies and policy lan-
guages were also included as well as works describing attribute sharing, storage and privacy
but are not discussed in this chapter beyond their inclusion in the taxonomy in Section 2.2 and
statistics given in this section.

Exclusion Criteria:

• Any non-refereed work including patents, standards (XACML and SAML are mentioned
due to their frequent use in refereed literature, but not included in the statistics in this docu-
ment), technical reports, or special publications (The NIST Guide to Attribute Based Access
Control (ABAC) Definition and Considerations [Hu et al. 2013] is discussed in the introduc-
tion of this chapter but not included in the statistics).

• Any work that is not in English or is incomprehensible due to language issues (e.g. poorly
translated articles).

• Only documents published on or before October 20th 2014 are included (due to the date
the survey was conducted). No documents were excluded based on age with the earliest
document included being published in 1997.

• Any literature related to, or primarily using Attribute-Based Encryption (ABE) was ex-
cluded as this literature search is intended to focus on models, frameworks, architectures
and use of ABAC as opposed to attribute-base cryptography. While ABE may be a useful
tool for enforcing attribute-based policies in environments where traditional policy enforce-
ment is not possible (e.g. in off-line or untrusted environments), it in its self does not provide
an underlying model for access control and only comprises one component of a complete
security architecture.

• Any article that was superseded by another work by the same authors is excluded for the
newer work. For example, if an author published the beginnings of an ABAC model in a
conference and then further developed and finalized this model in a later journal paper, both
works are considered to be the same model (both are included in the statistics in Figure 2.1).

The result of this manual search found 199 papers that fall into at least one of the categories
described in Section 2.2. A summary of the year in which each paper was published is given
in Figure 2.1a and the category to which it belongs in Figure 2.1b. From this set of papers, the
most notable and relevant from the category of “ABAC Models” and its child categories are
reviewed in Section 2.3 in this chapter.

The remainder of this chapter is divided into the following sections: Section 2.2 provides
a taxonomy of current areas of ABAC research, Section 2.3 reviews the most notable ABAC
models and frameworks, Section 2.4 identifies and discusses open problems not yet addressed
by present ABAC efforts, and Section 2.5 provides concluding remarks.
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2.2 Taxonomy of Current Areas of Research
The current body of ABAC related research can be classified into a number of hierarchical
categories as described in Section 2.2. This taxonomy of current ABAC research was created
after manually analyzing the peer-reviewed literature found via the methodology described in
Section 2.1 and grouping works describing similar aspects of ABAC together. Related groups
(e.g. Policy Languages and Policy Mining) were then further grouped under a more general
category (e.g. Policy) that adequately describes all members of the child groups. A diagram of
the taxonomy is presented in Figure 2.2.

2.3 Models and Frameworks

2.3.1 Pure ABAC Models
Recent efforts have aimed to take the first steps towards creating foundational models of “pure”
ABAC (i.e. ABAC models that are not simply extensions to existing models, e.g. RBAC, but
new attribute-based models that can be seen as a generalization of traditional models). A sum-
mary of the most relevant attempts at creating such a model are given in Tables 2.3 and 2.4 on
pages 25 and 31, with a more in-depth review of each being given later in this section. These
efforts can be subdivided into two categories (as described in Section 2.2 and Figure 2.2), “gen-
eral” and “domain specific”. “Domain specific” models aim to provide ABAC for a specific
use cases such as cloud computing, web services, etc. while “general” models aim to provide
an ABAC solution that may be applied to any situation where access control is desired.

2.3.1.1 General Models

A Logic-Based Framework for Attribute-Based Access Control Wang et al. put forth one
of the first “pure” and “general” ABAC models (published in 2004) in the form of a logic-based
framework based on logic programming where policies are specified as “stratified constraint
flounder-free logic programs that admit primitive recursion” [Wang et al. 2004] and attributes
and operations are modelled as sets in computable set theory [Dovier et al. 2000]. Methods
of optimizing the runtime performance of evaluating an ABAC-based policy are also demon-
strated, which involve transforming a given ABAC policy into a semantically equivalent but
runtime and overhead reduced policy when possible. While Wang et al.’s framework intro-
duces hierarchical attributes (something lacking from other models), it is largely focused on
the representation, consistency and performance of attribute-based policies and their evalu-
ation. Several critical components are absent, including lacking object attributes (the only
attributes considered are user attributes) and omitting formalization of ABAC aspects outside
of policies and their evaluation (e.g. only access control on services/operations is considered).

Attribute-Based Access Matrix Model Zhang et al.’s 2005 paper proposes a unique model
of ABAC based around an attribute enhanced access matrix, called the Attribute-Based Access
Matrix (ABAM) model [Zhang et al. 2005]. ABAM defines an access matrix in which each
row is represented by a pair consisting of a subject and its set of attributes (S i, ATTS (S i))
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Table 2.1: Description of Taxonomy Categories in Figure 2.2.
Category Description

Applied Works & Implementations Literature describing implementations of ABAC systems, frameworks for using
XACML, SAML, etc. or any kind of application of existing ABAC research.

• XACML-Based Implementations or applied work using XACML.
• SAML-Based Implementations or applied work using SAML.

• Other Any literature describing implementations or applied work that does not fit into the
above subcategories.

ABAC Models Literature describing access control models that incorporate attributes into access con-
trol decisions.

• Hybrid Models Models that extend or combine existing (non-ABAC) models of access control (e.g.
RBAC) to incorporate attributes.

– PRBAC
Parameterized Role-Based Access Control (PRBAC) models are RBAC models based
around extending RBAC by parametrizing permissions and/or roles as described in Sec-
tion 2.3.2.1.

– Attribute-Based Role Assignment Models that extend RBAC to add attributes as described in Kuhn et al.’s Dynamic Roles
strategy (i.e. assigning roles via user attributes). Described in Section 2.3.2.2.

– Attribute-Centric
Models that extend RBAC to add attributes as described in Kuhn et al.’s Attribute-
Centric strategy that would not be classified as “pure” models of ABAC. Described in
Section 2.3.2.3.

– Role-Centric Models that extend RBAC to add permission filtering based on attributes as described
in Kuhn et al.’s Role-Centric strategy. Described in Section 2.3.2.4.

– Unified Models Access control models that combine ABAC with with alternative access control models
(i.e. non-traditional models) as described in Section 2.3.2.5.

• Pure ABAC Models ABAC models that are not extensions to existing models of access control but new
attribute-based models.

– General ABAC models that are system independent in that they are general enough to be applied
to any access control use.

– Domain Specific ABAC models that are designed for a particular domain or use (e.g. for protecting web
services).

* Cloud Computing Models targeting the domain of cloud computing.
* Real-time Systems Models targeting the domain of real-time systems.
* Collaborative Environments Models targeting the domain of collaborative work and educational environments.

* Mobile Environments Models targeting the domain of mobile environments, including both systems that track
mobile physical objects and mobile computing systems (e.g. cell phones).

* Grid Computing Models targeting the domain of grid computing.
* Web Services Models targeting the domain of web services, including service oriented architectures.
* Other Any domain specific model that does not fit in one of the above child categories.

Policy
Literature describing the mining for or evaluation, testing, and development of attribute-
based policies and languages. Also includes works attempting to preserve the privacy
of policies or otherwise hide details of policies from an adversary.

• Confidentiality Works aimed at preserving the privacy of attribute-based policies or otherwise hide
details of policies from an adversary.

• Languages Literature describing or extending attribute-based policy languages.

•Mining & Engineering Research aimed at the automatic mining of attribute-based policies or otherwise engi-
neering attribute-based policies.

• Evaluation & Testing
Literature describing the testing and evaluation of attribute-based policies. Includes
both the implementation of tools to automate the testing of policies and efforts to prove
the security/safety of policies (formally or otherwise).

• Transformations & Conversions
Methods and techniques for converting access control policies between policy lan-
guages, access control models, or otherwise transforming existing policies (e.g. to op-
timize policy evaluation or analysis).

Systematization of Knowledge Literature reviews and systematization of knowledge in the area of ABAC.

Attributes Works relating to sharing, storing, validating, securing or ensuring the privacy of at-
tributes used in ABAC.

• Confidentiality Efforts to ensure the privacy of attributes. That is protecting unwanted entities from
determining the value of potentially sensitive attributes.

• Storage & Sharing (Certificates)
Efforts to enable the sharing or storage of attributes. Includes frameworks, protocols
and data structures (e.g. attribute certificates) for securely sharing attributes between
access control entities.
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Table 2.2: Column Legend for Tables 2.3 and 2.4

Column Description

Object
Attributes

Whether the model supports object or resource attributes.

User
Attributes

Whether the model supports user or subject attributes.

Environment
Attributes

Whether the model supports attributes that describe the systems environment (e.g.
current time, number of online users, etc.).

Connection
Attributes

If the model supports attributes relating to the subject’s session and/or connection
to the system (e.g. subject’s host name, IP, session ID, etc.).

Mutable
Attributes

If the model supports attributes whose value change as a result of a subject’s
requests on a system.

Policy
Language

If the model formalizes its own policy language (3) or the language being used
(e.g. XACML).

Hierarchical Whether the model supports hierarchical constructs to simplify administration
and/or increase flexibility of policies. (e.g. hierarchical attributes, hierarchical
user or object groups, etc.).

Recursive
Rules

If the policy language presented in the work supports recursive rules or policies.

Trust Whether the model incorporates the notion of trust similar to that found in trust-
based access control.

User &
Object
Groups

Whether the model supports user or object groups to simplify administration
and/or increase flexibility of policies.

Separation of
Duties

Whether the model supports any kind of separation of duties and the types sup-
ported (e.g. static, dynamic, etc.).

Delegation If subjects are able to delegate a subset of their attributes or privileges to other
subjects.

Functional
Specification

Whether a functional specification is provided with the model.

Formal
Model

If the model is formalized (i.e. if any formal language or notation is used to fully
describe the model).

Emulates
Traditional
Models

If it is shown that the model can emulate the traditional models of access control
(e.g. DAC, MAC, RBAC).

Administration
Model

If an administrative model or functions are defined or presented.

Full Model Whether all necessary components of an usable ABAC model are described in the
cited work. Necessary components include; definition and format of attributes,
a description of policy language used or how polices are stated/evaluated, and
details of relations between access control elements.

Extends The models extend or used as the basis to create this hybrid ABAC model.

Identityless If this hybrid ABAC model allows for identityless access control. That is, access
control that does not require pre-existing knowledge about the user or their roles
in the system.
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Table 2.3: Comparison of General ABAC Models.
An explanation of each column item can be found in Table 2.2.

[Wang et al.
2004]

[Jin et al.
2012a]

[Zhang et al.
2005]

[Rubio-
Medrano et al.

2013]

[Servos and
Osborn 2014]

[Ferraiolo et al.
2011]

Object
Attributes 7 3 3 3 3

3(Attributes
do not have

values)

User Attributes 3 3 3 3 3
3(Attributes
do not have

values)

Environment
Attributes 7 7 7 3 3 7

Connection
Attributes 7 7 7 7 3 7

Mutable
Attributes 7 7 7 7 7 7

Policy Language

Has method of
representing

policies but no
defined

language

3

No details
given for how
policies are
represented

No policy
language use
(left to future

work)

3

Policies
expressed as

chain of
attribute

assignments

Hierarchical Hierarchical
attributes 7 7 7

Hierarchical
user and object

groups

Hierarchical
attributes

Recursive Rules 3 7 7
Supported via
cycles in the
TP-Graph

7 7

Trust 7 7 7 7 7 7

User & Object
Groups 7 7 7 7 3 7

Separation of
Duties 7 7 7 7 7 3

Delegation 7 7 7 7 7 7

Functional
Specification 7 3 7 7 7 7

Formal Model 3 3 3 Largely
informal 3 3

Emulates
Traditional
Models

Not
demonstrated 3 Not

demonstrated
Not

demonstrated 3 3

Administration
Model 7 Limited Very limited 7 7 3

Full Model
Only models
policies and

their evaluation
3 3 3 3 3
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and each column by a pair consisting of an object and its set of attributes (Oi, ATTS (Oi)).
Each cell ([S i,Oi]) then corresponds to the set of access rights the subject (S i) may exercise
over the object (Oi) assuming certain policies are fulfilled. Operations (or “commands” as
they are called in ABAM) may be executed by a given subject over a given object only if the
matching access rights required by the operation are found in the access matrix and the subject
and object’s attributes fulfill the set of policies on the operation.

In addition to the formalization of ABAM, Zhang et al. also provide a safety analysis to
prove the decidability of ABAM for a case where the set of attributes is finite, and the attribute
relationships allow no cycles. While ABAM’s unique use of an access matrix allows for a
more auditable ABAC system than other models (basic checks on which users may access a
certain object may be accomplished with a simple matrix lookup rather than evaluating policies
on a large set of attributes and subjects), it omits details on how policies are administered,
composed, or evaluated. A policy language is shown in examples but never formalized fully.
Similarly, it is stated that ABAM is comprehensive enough to encompass the traditional access
control models; however, this is not demonstrated and it is left unclear how ABAM might
encompass MAC or hierarchical RBAC. Lastly, ABAM lacks connection, environment and
hierarchical attributes as well as constraints to enforce separation of duty or enable delegation.

Secure Collaborations with Attribute-Based Access Control A more recent work (2013)
by Rubio-Medrano et al. [Rubio-Medrano et al. 2013] introduces the notion of security to-
kens into an abstract model of ABAC that defines the relevant core components and attributes
required for a minimal reference model. Unlike other rule-based ABAC models that make
access control decisions on the basis of evaluating policies given the current state of various
attributes, Rubio-Medrano et al.’s model maps attributes of access control entities (subjects, ob-
jects, etc.) to security tokens by traversing an administrator defined Token-Provisioning Graph
(TP-Graph). The TP-Graph is a directed, possibly cyclic, graph whose vertices represent sets
of related attributes or security tokens (referred to as attribute or security token families) and
its edges represent Token-Provisioning Functions (TP-Functions) that map attribute or security
token families to a different security token family based on defined criteria the attribute or to-
ken values must meet. By allowing system administrators to define TP-Functions and relating
security tokens to the permissions (object, operation pairs) they grant, it enables access control
decisions that are claimed to be more auditable and open to security analysis using techniques
based on graph theory.

While Rubio-Medrano et al.’s model gives a novel take on ABAC, the added auditability
and graph-based security analysis come at the cost of increased administrative complexity and
overhead. In theory the TP-Graph should allow for the development of security analysis tech-
niques based on graph theory but this seems to be largely left to future works. Additionally,
the ABAC model itself is largely informal, leaving most concepts well described but not de-
fined formally. It is left unclear how TP-Functions and the TP-Graph may be created by an
administrator or in what form they may take (a policy language is hinted at when directions for
future work are discussed). Similarly, no precise description or algorithm is given for how the
TP-Graph is traversed or how cycles may be handled.
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ABACα Another recent (2012) work by Jin et al. aims “to develop a formal ABAC model
that is just sufficiently expressive to capture DAC, MAC and RBAC” [Jin et al. 2012a]. This
model, ABACα, provides formalizations of the basic ABAC elements (users, objects, policies,
etc.), their relations and constraints that allow emulation of the traditional models. A partial
policy and constraint language, called Common Policy Language (CPL), based on set theory
notation and Boolean logic is defined and example configurations are given for DAC, MAC,
and RBAC-style access control in ABACα. Additionally, a limited functional specification
including a bare minimum of administrative functions is specified (although details on what
authorization conditions may be required for administrative functions are not given).

CPL is used for both policy specification and configuring constraints on ABACα to limit
possible attribute assignments and set a valid range and type of attribute values. Example 2.1
shows an authorization policy in CPL for enforcing RBAC style access control. In this case S
is the set of all subjects, O is the set of all objects, srole is a subject attribute that contains the
subjects roles, rrole is an object attribute that contains the set of roles that grant permission to
read the object and wrole is an object attribute that contains the set of roles that grant permission
to write to the object. The authorization policy states that a subject can only read the object if
they have a role in the objects rrole attribute value set and can only write to the object if they
have a role in the objects wrole attribute value set.

Example 2.1. Simple (non-hierarchical) RBAC authorization policy:
Authorizationread(s : S, o : O) ≡ ∃r ∈ srole(s) ∈ rrole(o)

Authorizationwrite(s : S, o : O) ≡ ∃r ∈ srole(s) ∈ wrole(o)

While this work provides a sufficient basis on which new foundational models of ABAC
may feasibly be built, it (intentionally) lacks several necessary components for the real world.
Features such as attribute and object hierarchies, environment and connection attributes, dele-
gation and separation of duties are omitted and left to future models built upon ABACα. Finally,
the given policy language, while adequate for modelling traditional access control systems, is
insufficient for real world application. No specifics are given on how CPL might handle mul-
tiple policy composition or conflicting policies and the heavy use of set theory notation in the
language (as opposed to traditional Boolean statements) makes CPL’s practicality over an ex-
isting policy language such as XACML questionable (creating XACML profiles for ABACα is
left to future works).

The Policy Machine Ferraiolo et al. have developed a novel approach to access control that
is highly attribute-based in the form of the Policy Machine (PM) [Ferraiolo et al. 2011, 2015].
The PM is an architecture and access control framework to support the specification and en-
forcement of attribute-based access control policies that aims to redefine and generalize access
control to provide a unified mechanism under which a wide range of policies may be enforced.
Unlike other approaches that define attributes as name value pairs, the PM represents user at-
tributes as many-to-many relations between users and capabilities (operation object pairs that
grant the ability to perform the given operation on the given object). Similarly, object attributes
are defined as many-to-many relations between sets of objects and sets of access entries (user
operation pairs that state that the given user may perform the given operation). Attributes are
hierarchical, allowing attributes to be assigned to other attributes so long as the chain of as-
signments remains acyclic. If two user attributes ua1 and ua2 exist such that ua1 is assigned
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to ua2, the set of users assigned to ua1 are contained in ua2 and the capabilities granted from
ua1 are those obtained through the chain of attribute assignments (e.g. all users assigned to ua1

in this case would gain the capabilities granted from both ua1 and ua2). Assignments between
object attributes work in a similar manner. If two object attributes oa1 and oa2 exist such that
oa1 is assigned to oa2, the set of objects assigned to oa1 are contained in oa2 and the objects of
oa1 have the access entries assigned to oa2 (in addition to those assigned to oa1).

Policies are specified using policy classes, chains of attribute assignments terminating with
a policy class as shown in the example policy given in Example 2.2. In this example, an RBAC
style policy class is shown that governs access to materials and grades for a university course.
The user attribute Instructor grants the capability to write to objects assigned the Course Ma-
terial attribute (in this case o1 and o2), however, as the Instructor attribute is assigned the
Teaching Assistant attribute it also grants the capabilities of the Teaching Assistant attribute
(and all other user attributes on the path to the policy class in Example 2.2). The Teaching
Assistant attribute grants the capability to read all objects assigned with the CS2034 attribute.
This includes any objects assigned attributes that are in turn assigned the CS2034 attribute (i.e.
the Course Material and Grades object attributes) in the assignment chain. In this example the
resulting permissions allow teaching assistants (i.e. u2) to read all of the CS2034 objects (o1,
o2, and o3) but only write to the grade objects (o3). Instructors (i.e. u3) have all permissions
of teaching assistants in addition to being able to write to Course Material objects (o1 and o2).
Finally, Students (i.e. u1) are limited to only reading Course Material objects (o1 and o2).

Example 2.2. Example Policy Machine policy class. Solid arrows represent attribute assign-
ments, while dashed lines represent capabilities of the shown user attributes.

u1 u2 o2o1 o3u3

Students Instructor

Teaching 
Assistant

Users

Course
Material

Grades

CS2034

CS2034 Policy

{w}

{r}

{w}

{r}

Ferraiolo et al. show that the PM is sufficiently flexible to enforce DAC, MAC, RBAC
and Chinese Wall [Brewer and Nash 1989] style security policies and provide further means
to constrain policies with prohibitions, restrictions and obligations. An administration model
is also presented, as well as details on a number of architectural components necessary for
implementation. The PM specification described in [Ferraiolo et al. 2015] has served as the
basis for the ANSI/INCITS Next Generation Access Control standardization effort [INCITS
2013, 2015].
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Hierarchical Group and Attribute-Based Access Control Lastly, the work by Servos and
Osborn [Servos and Osborn 2014] (part of this thesis and discussed in-depth in Chapter 3)
attempts to create a formal general model of ABAC that provides a group based hierarchical
representation of object and user attributes. In this model, entitled Hierarchical Group and
Attribute-Based Access Control (HGABAC), attributes are assigned both directly to access
control entities and indirectly assigned through user and object attribute groups. Attribute
groups help simplify administration of ABAC systems by allowing administrators to create
user or object groups whose membership indirectly assigns sets of attribute/value pairs to its
members. These groups are hierarchical and inherit attribute/value pairs from their parent
groups allowing for more flexible policy representation when combined with the three-valued
logic based policy language proposed in the work.

The HGABAC policy language (HGPL) represents policies as C style boolean statements
that may evaluate to TRUE, FALSE or UNDEFINED. A resulting evaluation of TRUE implies
that access should be granted, FALSE that it should be denied and UNDEFINED if the policy
can not be properly evaluated at the current time (equivalent to a result of FALSE for access
control decision purposes). Policies are associated with a set of operations that they grant if
satisfied. Example 2.3 presents a number of example policies that are possible in HGABAC.

Example 2.3. Possible policies supported by HGABAC:

• P1 = (user.age >= 18 AND object.title = "Adult Only Book", read)

Any user with an age of 18 or older can read the book with the title ”Adult Only Book”.

• P2 = (user.id = object.author, write)

A user can write to any object they are an author of.

• P3 = (user.role IN {"doctor", "intern", "staff"} AND user.id !=

object.patient, read)

A user can read a medical record if they have the role of doctor, intern or staff but only if
they are not listed as a patient in that record.

• P4 = (object.type = "program" AND object.required certifications

SUBSET user.certifications, run)

A user can run a program if they have the required certifications listed in the programs
required certifications attribute.

Servos and Osborn show that their policy language and attribute groups are capable of
emulating MAC, DAC and hierarchical RBAC (though not separation of duties) and that their
attribute groups result in less complex (in terms of the number of assignments and relations
between access control entities) representations than standard (non-hierarchical) ABAC models
under a number of hypothetical use cases.

2.3.1.2 Domain Specific Models

While a handful of recent ABAC related works have sought to create “general” models, the
more popular trend in modern access control literature has been the creation and formalization
of “domain specific” ABAC models (summarized in Table 2.4). A large focus has been given to
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the domains of cloud computing [Buehrer and Wang 2012], grid computing [Lang et al. 2009,
2006, 2010], web services [Yuan and Tong 2005; Shen and Hong 2006; Xia and Liu 2009;
Shen 2009], and related areas including mobile computing [Covington and Sastry 2006] and
cross-domain service-oriented architecture [Dan et al. 2012].

Cloud Computing Buehrer and Wang propose an ABAC model based on class algebra, en-
titled Class Algebra Attribute-Based Access Control (CA-ABAC), intended to provide access
control between federated educational clouds [Buehrer and Wang 2012]. CA-ABAC makes
use of the non-probabilistic version of class algebra implemented by the Cadabia knowledge
base [Buehrer et al. 2001] as a basis for its ABAC policy language. Example policies from
[Buehrer and Wang 2012] are given in Examples 2.4 and 2.5.

Example 2.4. Only students that have signed the contract/consent form (the form named
okJim55) may read or execute course material owned by the teacher named Jim.

new Policy[n1] {

agents: "ENV.user in @School[A;B]

.student{@Form[okJim55] in singedForms}" ∧∧Query

rights: @Rights[read,execute],

objects: "@Thing{owner = @Teacher[Jim]}

}

Example 2.5. Uses the environments time attribute to block students from reading the answers
to homework assignment 5 until after the due date.

new BlockPolicy[n5] {

agents: "ENV.user in @Student," ∧∧Query

rights: @Rights[read],

objects: "@Homework[assignment5]

{dueDate > ENV.date}.answer" ∧∧Query

}

Buehrer and Wang outline a very informal description of their model which mostly de-
scribes policy use and a hypothetical system architecture. While the prospect of using class
algebra as a policy language may have potential, CA-ABAC lacks formalization or details on
many of the key features of an ABAC system. No description is given of what constitutes an
attribute in the model or their relation to users, objects or the environment. Basing the policy
language on Cadabia queries may lead to problems for real world use as the Cadabia open
source project is no longer maintained.

Real-time Systems Burmester et al. [Burmester et al. 2013] put forward the real-Time
Attribute-Based Access Control (T-ABAC) model, that adds real-time attributes to the concept
of rule-based ABAC to support highly dynamic real-time applications. Real-time attributes
are defined as attributes whose value depends on time and is a member of an ordered set of
availability labels which determines the “priority” of a subject’s request, the “congestion” of
a resource or the “criticality” of the environment. Burmester et al. also provide a packet for-
warding protocol that takes the priority of access requests into account and demonstrate the
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Table 2.4: Comparison of Domain Specific ABAC Models
An explanation of each column item can be found in Table 2.2.

[Buehrer
and Wang

2012]

[Burmester
et al. 2013]

[Smari et al.
2009, 2014]

[Liang et al.
2012]

[Covington
and Sastry

2006]

[Kerschbaum
2010]

[Lang et al.
2006, 2009]

Domain Cloud
Computing

Real-time
Systems

Collaborative
Environ-

ments

Collaborative
Environ-

ments

Mobile En-
vironments

Mobile En-
vironments

Grid
computing

Object Attributes 3 3 3 3 3 3 3

User Attributes 3 3 3 3 3 3 3

Environment
Attributes 3 3 7 3 3 7 3

Connection
Attributes 7 7 7 7 7 7

Shown in
example but
not model

Mutable
Attributes 7 7

Mutable
trust

attribute
7

Limited,
based on

transaction
attributes

7 7

Policy Language

Class
Algebra
(from

Cadabia
knowledge

base)

Does not
mention
policies

Policy
language
shown in
examples
but not
defined

XACML

Claims to
have policy

language but
is left

undefined
and no

examples
given

XACML

Policies are
algorithms,
no language
used/defined

Hierarchical 7 7 7 7 7 7 7

Recursive Rules 7 7 7 7 7 7 7

Trust 7 7 3 7 7 7 7

User & Object
Groups 7 7 7 7 7 7 7

Separation of
Duties 7 7 7 7 7 7 7

Delegation 7 7 7 7 7 7 7

Functional
Specification 7 7 7 7 7 7 7

Formal Model Informal

Only
formalizes
real-time
attributes

and packet
mechanics

3 3 Informal 3 3

Emulates
Traditional Models

Not demon-
strated

Not demon-
strated

Not demon-
strated

Not demon-
strated

Not demon-
strated

Not demon-
strated

Not demon-
strated

Administration
Model 7 7 7 7 7 7 7

Full Model

Lacks
details,
mostly

describes
policy use

Only models
real-time
attributes

and packet
mechanics

Lacks
details,

unclear how
policies are
evaluated

and format
of attributes

Lacks
details, more
architecture
then model

Lacks
details,
policy

language not
formalized

3 3

Continued on next page in Table 2.5.
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Table 2.5: Comparison of Domain Specific ABAC Models (continued from Table 2.4).
An explanation of each column item can be found in Table 2.2.

[Lang et al.
2010]

[Yuan and
Tong 2005]

[Shen and
Hong 2006]

[Dan et al.
2012]

[Xia and Liu
2009] [Shen 2009] [Zhang et al.

2014]

Domain Grid
computing

Web
Services

Web
Services

Web
Services

Web
Services

Web
Services

Web
Services

Object Attributes 3 3 3 3 3 7 3

User Attributes 3 3 3 3 3 3 3

Environment
Attributes 3 3 3 3 3 7 3

Connection
Attributes 7 7 7 7 7 7 7

Mutable
Attributes 7 7 7 7 7 7 7

Policy Language XACML

Model lacks
language,

implementa-
tion uses
XACML

XACML

Model lacks
language,

implementa-
tion uses
XACML

XACML XACML XACML

Hierarchical 7 7 7 7 7 7 7

Recursive Rules 7 7 7 7 7 7 7

Trust 7 7 7 7 7 7

Claims trust
attribute but

fails to
provide
details

User & Object
Groups 7 7 7 7 7 7 7

Separation of
Duties 7 7 7 7 7 7 7

Delegation 7 7 7 7 7 7 7

Functional
Specification 7 7 7 7 7 7 7

Formal Model Largely
informal Simplistic Simplistic Simplistic 3 Informal Largely

Informal

Emulates
Traditional
Models

Not demon-
strated

Not demon-
strated

Not demon-
strated

Not demon-
strated

Not demon-
strated

Not demon-
strated

Not demon-
strated

Administration
Model 7 7 7 7 7 7 7

Full Model

Minimal
model,
mostly

architecture
combining

existing
works

3 3

More imple-
mentation

using
XACML

then model

3

More
theoretical
architecture
combining

existing
works then

model

Basic
definitions
for model,

mostly
architecture
combining

existing
works.
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versatility of T-ABAC by discussing two possible applications, a substation automation sys-
tem, and a medical CPS. While the T-ABAC model does a good job of dealing with issues
unique to real-time systems, it omits several core ABAC model components. No information
is given about how policies are represented, evaluated or apply to the model and only the con-
cept of real-time attributes is developed with regard to ABAC. As such, T-ABAC presents a
sufficient basis for extending existing ABAC models to support real-time applications, but is
missing necessary components to be a standalone model.

Collaborative Environments Collaborative working and educational environments enable
cooperative work, research and learning through shared application or service resources. Col-
laborative applications and services include but are not limited to E-mail, wikis, instant mes-
saging, group blogs, version control systems, courseware, and software to support shared doc-
ument, workspace, task and work flow management. As these applications have unique access
control requirements, they have attracted a notable amount of attention in the access control
literature including a number of papers focusing on applying ABAC policies to collaborative
systems. Such works include Smari et al.’s ongoing research project and multiple publications
supporting ABAC for collaboration environments [Zhu and Smari 2008; Smari et al. 2009,
2014] and Liang et al.’s multiple-policy supported ABAC architecture for large-scale collabo-
ration systems (MPABAC) [Liang et al. 2012].

Smari et al. present an ABAC model aimed at collaboration environments [Zhu and Smari
2008] that incorporates trust and privacy into access control policies. They extend this model
over a number of works [Smari et al. 2009, 2014] to fully formalize their notion of trust and
privacy and illustrate their model with an implementation and detailed case study involving a
multi-organizational collaborative crisis management system. Their model consists of a three-
valued (“allow”, “deny”, and “NA”) rule-based policy evaluation on subject and object at-
tributes that integrates trust and privacy through special mutable trust and purpose attributes.
Trust is considered to be “the degree that a subject will perform as expected in a certain given
context” and is quantified as a real number between 0 and 1 and assigned as the value of a
subject’s trust level attribute. As a user performs requests upon the system, their previous be-
haviour is assessed and used to determine if their future behaviour deviates or conforms to
what is expected (effecting the user’s trust level). In addition to this dynamic notion of trust, a
subject’s trust level is also dependent on other subject attributes including the recommendation
from others and the level of collaboration between organization of a requester and that of a
resource. This trust level can then be included in access control policies to limit or expand a
user’s access to system resources based not only on traditional access policies but also their
evaluated trust level. The concept of privacy is enforced by assigning a set of well-defined pur-
poses to subjects and objects as an attribute which represents either for what purposes a subject
may access an object or for what purposes an object may be accessed respectively. Access to
a specific object is allowed only if the purpose of the subject for accessing the object matches
a purpose allowed by the object. While Smari et al.’s model successfully introduces trust and
privacy to ABAC, it omits details on policy evaluation or a formalized policy language. Exam-
ple policies are shown but no explanation is given for how the operations may work with the
three-valued logic used by the model.

Liang et al. offer a model and architecture for Multiple-Policy Attribute-Based Access Con-
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trol (MPABAC) [Liang et al. 2012] that addresses the access control issues inherent in large-
scale device collaboration systems (i.e. mainly the large number of heterogeneous devices).
Unlike other ABAC models, MPABAC models resources as devices (device attributes rather
than object attributes, etc.) and focuses on limiting access to networked devices (e.g. seismo-
graphs, orchestrated lights, etc.) based on multiple policies possibly originating from differ-
ent domains but evaluated locally. The described architecture and implementation detail how
XACML may be used to communicate access control information between different domains
and enforce the MPABAC model. As MPABAC largely focuses on architecture and XACML
use, the ABAC model itself omits details on how policies are evaluated or combined. Details
on how attributes are represented (e.g. if they are sets, collections of values, or primitive data
types, etc.) are similarly omitted and the notion of policies having a priority level is introduced
but not fully formalized in terms of the MPABAC model.

Mobile Environments Several efforts have advocated models of ABAC that are contextu-
ally aware of a user or resource’s physical environment. Covington and Sastry’s Contextual
Attribute-Based Access Control (CABAC) [Covington and Sastry 2006] investigates using the
dynamic properties commonly available in a mobile environment (e.g. a user’s current physical
location) as attributes to support ABAC for mobile applications. Transaction attributes that are
mutated or created based on a user’s transactions with a service provider (e.g. a user may have
an attribute that holds the total amount of money spent at a certain shop) are also supported as
a special case of contextual user attribute. These attributes allow for access policies to be based
around past transactions with a user. For example, a restaurant may have a policy that grants
access to their Wi-Fi connection to customers that have made a purchase in the last 24 hours. A
custom authorization policy specification language consisting of constant symbols (e.g. object
references), variable symbols (e.g. location and time), and operation symbols (e.g. +, -, /, *,
AND, OR, <, >, etc.) is described but not formalized or demonstrated.

A similar work by Kerschbaum details an access control model for mobile physical objects
[Kerschbaum 2010] that aims to apply access control to physical mobile resources embed-
ded with RFID tags. Kerschbaum’s model applies attribute-based visibility policies to supply
chain information based on the contextual location of physical objects as they transverse multi-
company supply chains. This is accomplished by extending Yuan and Tong’s ABAC model
for web services [Yuan and Tong 2005] (discussed later in this section) to include upstream
and downstream visibility as an attribute for each pairing of subject and object to allow poli-
cies to be created based on an object’s trajectory relative to a subject (i.e. whether a subject is
upstream or downstream of an object’s current location in the supply chain). Policy rules are
specified using a Boolean function of the subject and resources attributes as shown in Exam-
ple 2.6. In this example a subject, s, may access the information pertaining to a resource, r, if
the attributes “downstream” or “upstream” are in the attribute set produced by the pairing of
s and r, i.e. ATTR(s, r). Such attribute sets are continuously updated based on the subject and
resource’s current physical location.

Example 2.6. Resource visibility policy:
access(s, r) ← "downstream" ∈ ATTR(s, r) ∨

"upstream" ∈ ATTR(s, r)
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A method for encoding such visibility policies in XACML is also described. XACML
environment attributes are used in place of assigning attributes to pairings of subjects and
resources (as XACML does not support direct assignment of attributes to subject resource
pairs).

Grid Computing Grid computing has been another common target of domain specific ABAC
models as it presents unique access control requirements stemming from the distributed nature
of grid computing, where resource providers and users may be in independent security do-
mains. Lang et al.’s Attribute-Based Multipolicy Access Control (ABMAC) [Lang et al. 2006,
2009] presents a model and Globus Toolkit release 4 (GT4) based authorization framework
for applying ABAC to grid computing. In addition to user, object and environment attributes,
ABMAC supports service and action attributes that allow attributes to be applied to grid ser-
vices or a grid action respectively. Policies differ from most rule-based ABAC models in that
each policy is encapsulated and uses its own definitions and decision-making algorithms, al-
lowing for independent evaluation without changing a policy’s description. A similar but more
informal work, Grid ABAC [Lang et al. 2010], also uses GT4 to implement and demonstrate a
grid based ABAC model that supports action attributes and uses XACML as a policy language.
Grid ABAC, unlike ABMAC, largely focuses on being a grid authorization architecture and as
such provides a more minimalistic ABAC model.

Web Services By far the largest area of research in domain specific ABAC models is towards
attribute and policy-based access control for web services. Identity-less access control such as
ABAC provides a potential solution to furthering automated web service discovery and use
by allowing access control decisions to be made without prior knowledge of the subject or
their relation to the service provider. Of the many ABAC models targeting web services [Yuan
and Tong 2005; Shen and Hong 2006; Dan et al. 2012; Xia and Liu 2009; Shen 2009; Zhang
et al. 2014], most notable is the model by Yuan and Tong (ABAC for Web Services), upon
which several other ABAC models [Kerschbaum 2010; Xia and Liu 2009] are based. Yuan and
Tong describe ABAC in terms of authorization architecture and policy engineering and give
an informal comparison between ABAC and traditional role-based models. Policy rules are
defined as a Boolean function comparing the attributes of the subject making the request, the
resource potentially being access and the system’s environment. If the function evaluates as
true, access is granted to the subject, otherwise access is denied.

Two example policy rules from [Yuan and Tong 2005] are shown in Example 2.7. Rule 1
(R1) allows a subject, s, to access the ApprovePurchase web service resource, r, if they have
a Role attribute with a value of “Manager”. Rule 2 (R2) allows any user access to a resource
they own. That is, if their user ID is equal to the value of the ResourceOwner attribute for the
given resource, r.

Example 2.7.
R1: can access(s, r, e) ←

(Role(s) = "Manager") ∧

(Name(r) = "ApprovePurchase")

R2: can access(s, r, e) ←

(UserID(s) = ResourceOwner(r))
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While Yuan and Tong’s model is limited, only giving an overview of subject, object, and
environment attributes and their relation to policies, it was an earlier effort which served as the
basis for more formalized future works. In addition to the model, an authorization architec-
ture is introduced that uses XACML to securely communicate attributes, policies, and access
control decisions between a number of actors.

Shen and Hong propose WS-ABAC [Shen and Hong 2006], a more extensive but still rel-
atively simplistic ABAC model designed for web services accompanied by an XACML-based
authorization architecture. In the WS-ABAC model policies are based on a straightforward tu-
ple language that is mapped to XACML when used in their authorization architecture. Attribute
constraints are expressed as a series of attribute conditions, <Attribtue Name> <Operation>
<Value> statements, combined with logical AND (represented as ∩) or OR (represented as ∪)
operators. Valid attribute condition operations are limited to >, <, ≥, ≤, =, ,. In Example 2.8,
constraint C1 limits access to a web service to a manager who is accessing the service between
the hours of 9:00 AM and 5:00 PM from the office. Constraint C2 limits access to clerk when
the system load is low or to a manager at any time or system load.

Example 2.8. Example WS-ABAC Attribute Constraints
C1: Identity="manager" ∩ Time≥9:00 ∩ Time≤17:00 ∩ Location="office"

C2: Identity="clerk" ∩ System load="low" ∪ Identity="manager"

WS-ABAC policies are defined as the triple <S, srv, C>, where S is the set of subjects to
which the policy pertains, srv is the service the policy grants access to and C is the attribute
constraint. Access to a service is only granted if (1) there exists a policy triple containing
the requested service, (2) the user, U, making the request is a member of S (U ∈ S ) and (3)
the attribute constraint, C, evaluates to true. As with Yuan and Tong’s ABAC for Web Ser-
vices, this work presents a minimalistic model and mostly focuses on an architecture that uses
XACML and attribute-based policies to provide authentication for web services (as opposed to
a complete and/or foundational model of ABAC).

A number of later publications have followed in the same suit, providing minimally suffi-
cient models with accompanying XACML-based architectures targeting web services or Service-
Oriented Architectures (SOA). Dan et al. [Dan et al. 2012] create and implement an XACML
architecture for cross-domain SOAs. Xia and Liu [Xia and Liu 2009] study using action and
attribute-based models for web services and develop a limited ABAC model and XACML ar-
chitecture that extends the work of Yuan and Tong. Shen [Shen 2009] presents SABAC, an
informal semantic-aware ABAC model for web services that makes use of present standards,
including XACML. Finally, Zhang et al. [Zhang et al. 2014] describe a largely informal ABAC
security model for service-oriented computing that adds the notion of trust as well as offer-
ing an authorization architecture for web services based on combining existing works (mainly
SAML and XACML). However, few details are provided on their ABAC or trust model, as
more attention is given to the authorization architecture.

Digital Libraries An earlier work (2002) by Adam, et al. [Adam et al. 2002] identified the
need for attributes to deal with the challenging requirements of providing access control for
digital libraries. Digital libraries are information systems that facilitate the storage, retrieval
and acquisition of knowledge between creators, consumers and librarians on a global scale.
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Adam, et al. suggest a novel access control system for protecting the Global Legal Information
Network (GLIN), a digital library created by the Law Library of Congress for making laws and
legal decisions accessible to citizens, legislators, government and private sector officials3. Their
model grants privileges based on user credentials (sets of typed attributes relating to the same
topic or structure, e.g. an employee credential may contain an age, address and salary attribute)
and object concepts (conceptual hierarchies extracted from the content of an object using a
document management mechanism built into GLIN [Holowczak 1997]). Both credentials and
concepts are hierarchical. Credentials types (declarations of what attributes are contained in a
credential, their type and possible values) are organized into a hierarchy such that a credential
type inherits all attributes of the credential type proceeding it in the hierarchy. For example, if
an employee credential type specified that it contains the attributes age, address and salary and
a international employee credential type specified that it contains the attributes nationality and
visa, it would also gain the attributes age, address and salary if international employee was a
child of employee in the credential type hierarchy.

A simple credential constraint specification language is introduced that allows for the eval-
uation of user’s attribute values (or their assignment to a specific credential) using rudimentary
operations (=, ,, <, >, ≤, ≥, ⊂, ⊆, ⊃, ⊇, 1, *, 2, +, ∈, <). Constraint expressions take the form
of X.a OP v where X is a variable representing any user in the system, a is an attribute name,
OP is an operation and v is a value (for example X.age > 18 would specify all users with an
age over 18). Constraint expressions can also simply be a credential type to specify all users
assigned to a given credential (including children of that credential in the credential type hier-
archy). For example, the expression employee(X) would specify all users who are employees.
These constraint expressions are used in Access Authorizations to create the access policies of
the system. Access Authorizations are tuples consisting of a credential specification (one or
more credential expressions joined with AND or OR symbols), entity specification (denotes the
concepts, objects or parts of objects the authorization refers), privilege (a valid operation on an
object) and sign (whether the authorization is positive, grants the privilege, or negative, forbids
it). Example Access Authorizations are shown in Example 2.9.

Example 2.9. Some Possible Access Authorizations:

• A1 = (employee(X), 2016 Income Report, view-all, +)

Allows all employees to view the “2016 Income Report”.

• A2 = (international employee(X) ∧ X.nationality = Canadian, 2016 Income

Report.Canada part, update, -)

Forbids international employees from Canada from updating the Canada part of the “2016
Income Report”.

• A3 = (X.age ≥ 18, Book of Guns ∧ Book of Drugs, view-all, +)

Allows any user with an age of 18 or over to view the “Book of Guns” and the “Book of
Drugs”.

3http://www.glinf.org
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Adam, et al. also provide details about a supporting system architecture and protocol,
discuss an implementation of their model and explain how administrative operations are per-
formed. Later work by the same authors [Ferrari et al. 2002] introduces an authorization system
for digital libraries that utilizes this access control and authorization model.

2.3.2 Hybrid Models
Hybrid models of ABAC aim to combine attributes into existing models of access control
or to extend the traditional models with identityless or policy-based access control concepts.
This includes both early attempts at adding parameterized roles and permissions to RBAC as
well as more modern efforts to unify ABAC with alternative access control models such as
Relationship-Based Access Control (ReBAC) and Behaviour-Based Access Control (BBAC).
Kuhn et al. [Kuhn et al. 2010] describe a number of hypothetical strategies for adding attributes
to RBAC:

Dynamic Roles Roles are assigned dynamically based on the user’s and environment’s at-
tributes, providing identityless access control for RBAC-based systems. Most dynamic
role-based hybrid models lack object attributes or a means to dynamically assign permis-
sions to roles, and as such lack the flexibility of ABAC to limit access based on the content
of objects (e.g. only allow users to view medical records in which they are the patient). This
leads to what has been described as an “explosion” [Jin et al. 2012b] of role-permission
assignments or the creation of a large number of private roles.

Attribute-Centric Roles are considered to be just another attribute of a user. No role-permission
relation is created and permissions are assigned through policies. If no special considera-
tion for roles is provided in an Attribute-Centric model this could be seen simply as “pure”
ABAC modelling RBAC. As this can be seen as equivalent to “pure” ABAC in most cases, it
is deprived of the advantages of RBAC (simple administration, auditability, straightforward
separation of duties, etc.).

Role-Centric The maximum permission set available in a given session is constrained by
attribute-based rules. Constraint rules are used only to reduce permissions available to the
user and never expand them (differentiating it from role parameterization). Few details are
given about how this strategy may be implemented or if it is different enough from existing
models of parameterized RBAC to warrant its own strategy. To date only one published
work is known to specifically utilize this strategy [Jin et al. 2012b].

In addition to the strategies described by Kuhn et al., role parameterization [Ge and Osborn
2004; Giuri and Iglio 1997; Abdallah and Khayat 2005] can be seen as a viable option for
ABAC-RBAC hybridization. In Parameterized RBAC, permissions (and in some cases roles)
are parameterized with conditions that must be met before access is granted to a subject. Often
these conditions involve attributes of the object being accessed but may also include attributes
of the user and environment (e.g. time).

We categorize the ABAC Hybrids reviewed in this section into the following subcategories:

Parameterized Role-Based Access Control RBAC models based around extending RBAC
by parametrizing permissions and/or roles as described in Section 2.3.2.1.
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Attribute-Based Role Assignment Models that extend RBAC to add attributes as described
in Kuhn et al.’s Dynamic Roles strategy (i.e. assigning roles via user attributes). These
models are reviewed in Section 2.3.2.2.

Attribute-Centric Models that extend RBAC to add attributes as described in Kuhn et al.’s
Attribute-Centric strategy that would not be classified as “pure” models of ABAC. These
models are reviewed in Section 2.3.2.3.

Role-Centric Models that extend RBAC to add permission filtering based on attributes as
described in Kuhn et al.’s Role-Centric strategy. To date only Jin et al.’s RABAC [Jin et al.
2012b] is known to exist in this category. This model is reviewed in Section 2.3.2.4.

Unified Models of Access Control Access control models that combine ABAC with with al-
ternative access control models (i.e. non-traditional models) as described in Section 2.3.2.5.

Tables 2.6 to 2.8 summarize and compare the most notable of these hybrid models using similar
criteria to the comparison between “pure” ABAC models found in Tables 2.3 and 2.4 (criteria
defined in Table 2.2 on page 24).

2.3.2.1 Parameterized Role-Based Access Control

Parameterized Role-Based Access Control (sometimes abbreviated PRBAC [Abdallah and
Khayat 2005]) can be seen as an early first step towards ABAC. In PRBAC, permissions nor-
mally modelled as object, access mode pairs in RBAC are parameterized with a condition that
must be met before the permission is granted to a subject. In Giuri and Iglio’s Role Tem-
plate model [Giuri and Iglio 1997] RBAC permissions are extended with a logical expression
referred to as the privilege restriction.

This restriction is evaluated against both the object on which access is requested and the re-
turned value of predefined functions. One example (given in the paper) would be if permissions
included “(delete, PatientRecord, PatientRecord.State = ‘discharged’)” then
the delete operation would be permitted on any patient record that is in a “discharged” state,
similarly the permission “(delete, PatientRecord, today() in [Mon..Fri])” would
permit the delete operation only on week days (Monday to Friday). Additionally, role tem-
plates are defined that extend the concept of roles to “encapsulate and compose parameterized
privileges”. These templates act as a function that takes a set of values (related to the object the
role grants access to) and returns a set of parameterized permissions that make up a role. For
example, the role template (also taken from the paper) given in Example 2.10 would produce
the template instance given in Example 2.11 if the values prj = "PRJ1" and sal = 1000 are
used.

Example 2.10. Example role template.
R<prj, sal>= role(

(select, Employee, Employee.project = prj),

(update, Employee, Employee.project = prj ˆ Employee.salary <sal))
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Table 2.6: Comparison of Hybrid ABAC Models
An explanation of each column item can be found in Table 2.2.

Parameterized Role-Based Access Control Attribute-Based Role
Assignment

[Ge and
Osborn
2004]

[Giuri and
Iglio 1997]

[Abdallah
and Khayat

2005]

[Lupu and
Sloman
1997]

[Fischer
et al. 2009]

[Al-Kahtani
and Sandhu

2002]

[Shafiq et al.
2005]

Extends

Role Graph
Model

[Nyanchama
and Osborn

1999]

RBAC

FRBAC
[Khayat and

Abdallah
2003]

RBAC &
RBM RBAC RBAC

GTRBAC
[Joshi et al.

2005]

Identityless 7 7 7 7 7 3 Both

Object
Attributes 3 7 3 3 7 7 7

User Attributes 3 3 3 7 3 3 3

Environment
Attributes 7

Day of week
attribute
shown in

example but
not detailed

7

Time
attribute
shown in

example but
not detailed

7 7

Temporal
attributes

from
extended

model

Connection
Attributes 7 7 7 7 7 7 7

Mutable
Attributes 7 7 7 7 7 7 Mutable

trust values

Policy
Language XPath

No policy
language
formally
defined

(shown in
examples)

N/A

No policy
language
formally
defined

(shown in
examples)

3 3

SAML &
X-GTRBAC
[Bhatti et al.

2005]

Hierarchical Hierarchical
roles 7 7 Hierarchical

roles 7 Hierarchical
roles

Hierarchical
roles

Trust 7 7 7 7 7 7 3

Separation of
Duties

From
extended

model
7 7 7 7

Constraints
on use of

roles
mentioned

but not
detailed

From
extended

model

Delegation 7 7 7 7 7 7 7

Functional
Specification 7 7 7 7 7 7 7

Formal Model 3 3 3 Informal 3 3 3

Administration
Model

Does not
expand on
extended

model

7 7 7 7 7 7

Full Model 3

Definition
and

evaluation of
policies and
attributes is

only vaguely
defined

3

Lacks
details,
mostly

framework
for adding

RBM
concepts to

RBAC

3 3 3

Continued on next page in Table 2.7.
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Table 2.7: Comparison of Hybrid ABAC Models (continued from Table 2.6).
An explanation of each column item can be found in Table 2.2.

Attribute-Based Role Assignment (continued)

[Jin and
Fang-chun

2006]

[Cirio et al.
2007]

[Cruz et al.
2009, 2008]

[Zhu et al.
2008]

[Wei et al.
2010] [He et al. 2011]

Extends RBAC RBAC RBAC RBAC RBAC RBAC

Identityless 3 3 Both 3 3 Both

Object
Attributes 7 7 3 3 3 7

User Attributes 3 3 3 3 3 3

Environment
Attributes

Temporal
attributes 7 7 7 7 7

Connection
Attributes 7 7 7 7 7 7

Mutable
Attributes 7 7 7 7 7 7

Policy Language

ALC(D)
[Baader and
Hanschke

1991]

Unclear. OWL
and SPARQL

[Prud’Hommeaux
et al. 2008]

used for
modelling

RBAC.

OWL
[McGuinness
et al. 2004]

Policy language
not formally

defined

No policy
language
shown or
defined

SWRL
[Horrocks et al.

2004]

Hierarchical Hierarchical
roles 7 Hierarchical

roles
Hierarchical

roles
Hierarchical

roles
Hierarchical

roles

Trust 7 7 7 7 7 7

Separation of
Duties 7 3 7 7 3 3

Delegation 7 7 7 7 7 7

Functional
Specification 7 7 7 7 7 7

Formal Model 3
Only RBAC
modelling
formalized

Largely
informal 3 3 3

Administration
Model 7 7 7 7 7 7

Full Model 3

Mostly covers
modelling

RBAC in a an
OWL-DL

ontology. Few
details given on

attributes.

3 3

Limited details
on how

constraints and
policies are
handled or

defined

3

Continued on next page in Table 2.8.
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Table 2.8: Comparison of Hybrid ABAC Models (continued from Table 2.7).
An explanation of each column item can be found in Table 2.2.

Attribute-
Centric Role-Centric Unified Models of Access Control

[Huang et al. 2012] [Jin et al. 2012b] [Han et al. 2009] [Che et al. 2010] [Cheng et al. 2014]

Extends RBAC & ABAC

NIST RBAC
[Ferraiolo et al.

2001] & ABACα

[Jin et al. 2012a]

RBAC, TBAC, &
ABAC ABAC & BBAC ABAC & UURAC

[Cheng et al. 2012]

Identityless 3 7 Both 3 7

Object Attributes 3 3 3 7 3

User Attributes 3 3 3 3 3

Environment
Attributes 3 7 7 3 7

Connection
Attributes 7 7 7 7 7

Mutable Attributes 7 7 7
Limited. Based

on user
behaviours.

7

Policy Language Informal custom
policy language

CPL
[Jin et al. 2012a] XACML

Example policies
shown but no

language defined.
3

Hierarchical 7 Hierarchical roles
from NIST RBAC

Hierarchical
roles 7 7

Trust 7 7 7 7 7

Separation of Duties 7 From NIST RBAC 3 7 7

Delegation 7 7 7 7 7

Functional
Specification 7 3 7 7 7

Formal Model 3(other than
policy) 3 3 Largely informal 3

Administration
Model 7 From NIST RBAC 7 7 7

Full Model 3 3 3 3 3
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Example 2.11. Resulting role instance for values prk = “PRJ1” and sal = 1000.
R<"PRJ1", 1000>= role(

(select, Employee, Employee.project = "PRJ1"),

(update, Employee, Employee.project = "PRJ1" ˆ Employee.salary <1000))

While the role templates and parameterized permissions described by Giuri and Iglio may pro-
vide some advantages over classical RBAC, they do not consider the attributes of the subject,
limiting their privilege restrictions to only attributes of objects. This makes policies such as
“each student can access their own transcript” difficult to implement without assigning a unique
template instance to each student.

The work by Ge and Osborn [Ge and Osborn 2004] towards parameterized roles to support
XML databases provides a PRBAC solution that includes both the attributes of subjects and
the contents of objects. Ge and Osborn extend the role graph model [Nyanchama and Osborn
1999] to parameterize privileges with XPath-like [Clark et al. 1999] logical expressions that
contain variables determined at run time based on attributes defined in a user’s session. In
an example given in the paper, the parameterized privilege pair “(//Student[@StudID =

param1]/GeneralInfo, update)” would grant access to update a student’s record general
info section if the user’s student ID attribute matched the student ID in the record. Roles
are adapted to support parameterized privileges and the implications of parameterization on
inheritance in the role graph is considered. While this extension supports object attributes
(limited to the contents of the object) it is only applicable to the narrow domain of restricting
access to XML-based databases as opposed to a generic access control solution.

A number of similar PRBAC works have attempted to add logical expression based policies
to RBAC permissions including Abdallah and Khayat’s PFRBAC [Abdallah and Khayat 2005]
(an extension of FRBAC [Khayat and Abdallah 2003]) and Lupu and Sloman’s model [Lupu
and Sloman 1997] for reconciling Role-Based Management (RBM) and RBAC. Although these
and other PRBAC works add aspects of policy- and attribute-based access control to RBAC,
they fail to provide the identityless nature of modern ABAC systems. Users (or subjects) still
require assignment to roles (in most cases done manually), requiring pre-existing knowledge
of both the user and their place in the organization. While sufficient for conventional access
control scenarios, identity-based access control like PRBAC fails to provide the flexibility re-
quired for emerging computing paradigms including service-oriented architectures (e.g. web
services) or dynamic environments as commonly found in cloud computing.

2.3.2.2 Attribute-Based Role Assignment

Models based on Attribute-Based Role Assignment, or “Dynamic Roles” as defined by Kuhn
et al. [Kuhn et al. 2010], allocate roles to subjects based on the attributes of the subject and
environment at run time. In most cases, administrator created policies are defined via policy
languages that relate attributes to constant values (e.g. checking if a user’s age is greater than
18) and role assignment is performed when a subject first creates a session with the system
based on the outcome of these policies, the user’s attributes (e.g. age) and the current state of
the environment (e.g. current day of the week). These roles may be limited to a set of possible
roles assigned to the user (identity-based) or made totally dependent on attributes with no pre-
existing knowledge of the user (identityless).
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Al-Kahtani and Sandhu introduce identityless access control concepts into RBAC in their
Rule-Based Role-Based Access Control (RB-RBAC) model [Al-Kahtani and Sandhu 2002] by
automating the assignment of roles at run time based on a user’s attributes. In RB-RBAC, rules
defined in a custom policy language determine the set of roles a user is assigned based on at-
tributes provided with the user’s credentials. Policy rules take the form of Attribute Expression
→ Roles statements where Attribute Expression is a Boolean statement involving attribute
names/values and Roles is one or more roles granted if the user’s attributes satisfy the attribute
expression4. Example 2.12 demonstrates three rules that are possible in their policy language.
Rule 1 (R1) grants the Guest role to any user between the hours of 9 AM and 5 PM. In rule 2
(R2), users from Japan or New Zealand who are also 20 years or older are granted the Adult
role. Finally, in rule 3 (R3), users from Canada, the USA or Mexico who are 18 years or older
are granted both the Adult role as well as the North American role.

Example 2.12. Example RB-RBAC Policies
R1: (Time IN (900 .. 1700)) → Guest

R2: (Age ≥ 20) AND (Country IN {Japan, New Zealand}) → Adult

R3: (Age ≥ 18) AND (Country IN {Canada, USA, Mexico})

→ Adult AND North American

Seniority levels are used to denote an attribute’s value dominating another value in cases where
the order of values is not clear (e.g. strings or sets rather than numerical values), allowing
operations such as less than (<) or greater than (>) to be performed on values of any type. The
versatility of the model is demonstrated through a number of real life cases; however, the lack
of object attributes limits the flexibility of possible policies compared to those possible in most
“pure” ABAC models.

A number of approaches [Jin and Fang-chun 2006; Cirio et al. 2007; Cruz et al. 2009, 2008;
He et al. 2011] have attempted to use Semantic Web Technologies, such as Web Ontology Lan-
guage (OWL) [McGuinness et al. 2004], Semantic Web Rule Language (SWRL) [Horrocks
et al. 2004] and SPARQL Protocol and RDF Query Language (SPARQL) [Prud’Hommeaux
et al. 2008], to both model hierarchical RBAC and extend it with attribute-based dynamic role
assignment. Cirio et al. [Cirio et al. 2007] propose both a hybrid RBAC-ABAC model and a
supporting framework based on OWL Description Logic (OWL-DL) in which attributes are
used to classify subjects into access control roles. While all basic RBAC elements are formal-
ized into a OWL-DL ontology and details for expanding the expressiveness of OWL-DL with
SPARQL Protocol and RDF Query Language (SPARQL) are given, Cirio et al. do not fully
model the attribute-based aspects of their ontology. Details on how attributes are defined, as-
signed, related to users or how they may be combined with their framework are not provided.
Cruz et al. [Cruz et al. 2009, 2008] describe a “Constraint and Attribute Based Security Frame-
work for Dynamic Role Assignment” focused partly on using a user’s physical location for role
assignment. In this approach, predefined roles can have both a previously known sets of users
as well as users dynamically assigned based on the content of their attributes and policy set on
role assignment (referred to simply as constraints in the work). Rather than employing a policy

4The grammar of the policy language presented in [Al-Kahtani and Sandhu 2002] allows for more flexible policy
rules that include more complex constrains, restrictions and role combinations. However, the paper leaves most
of these to future work/extensions.
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language like most ABAC works, constraints are defined as attribute name, constraint pairs
(e.g. <Age, ≥ 18>) that are assigned directly to roles to limit their assignment. Semantics for
role inheritance and constraint dominance are given in addition to a description of an OWL-DL
ontology based prototype. Finally, both He et al. [He et al. 2011] and Jin & Fang-chun [Jin and
Fang-chun 2006] have also produced semantic web-based RBAC models that add elements
of ABAC. Both works represent and provide a means to reason about hierarchical RBAC in
description logic, He et al. using SWRL [Horrocks et al. 2004] and Jin & Fang-chun using
ALC(D) [Baader and Hanschke 1991]. Both also use attribute-based policies for role assign-
ment. The main difference between these models is the limitations put on attributes and support
for separation of duties; He et al. limit attributes to user credentials that have been verified by
a trusted third party (a process described in their accompanying architecture) and support clas-
sical RBAC separation of duties, while Jin & Fang-chun allow temporal attributes in addition
to the attributes of subjects but lack any notation of separation of duty style constraints.

Shafiq et al. propose an agent-based framework [Shafiq et al. 2005] for attribute-enhanced
RBAC in distributed environments that extends the Generalized Temporal Role-Based Access
Control (GTRBAC) model [Joshi et al. 2005]. In this framework, users are both directly as-
signed roles before hand and allowed to request additional roles at run time based on their self
declared attributes and the amount of trust a service provider has in those attributes (determined
partly based on additional credentials submitted by the user). In addition to allowing temporal
constraints on activating roles (e.g. only allowing the role employee to be activated between
9AM and 5PM), the framework also allows constraints to be placed on the duration a role can
be enabled in a given time interval, defined either for a single session or a total duration of
all sessions in which the role is active. The X-GTRBAC [Bhatti et al. 2005] XML-based pol-
icy language is extended to support SAML-based assertions and attribute-based authorizations
used in the framework. While this work presents a novel extension to GTRBAC to support
hybrid ABAC in cases where a single trusted attribute authority may not be available, like
RB-RBAC it is also omits support for object attributes, limiting the expressiveness of possible
policies.

A number of comparable models aim to provide analogous support for attribute-based role
assignment for web services and service-oriented environments, including the work done by
Zhu et al. [Zhu et al. 2008] and Wei et al. [Wei et al. 2010]. Zhu et al. put forward their General
Attribute-Based Role-Based Access Control (GARBAC) model aimed at web services while
Wei et al. introduce their Attribute and Role-Based Access Control (ARBAC) model aimed at
service-oriented environments. Both models provide hybrid ABAC for service-oriented archi-
tectures and support a similar set of features including object attributes and hierarchical roles.
While these models add object attributes (something lacking in other models in this subcate-
gory) they lack formal definitions of the policy language being used or the semantics behind it.
It is also left unclear how object attributes might be used in role assignment policies in practice
if assignment takes place before requests on specific objects are performed (in GARBAC a
constraint on role-permission assignment is hinted at but only shown partly in an example case
study).
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2.3.2.3 Attribute-Centric

Models based on the “Attribute-Centric” strategy, as defined by Kuhn et al. [Kuhn et al. 2010],
have the characteristic of incorporating attributes into RBAC model roles as just another at-
tribute of the user and not necessary a separate access control entity onto which permissions
are assigned. Instead, permissions are assigned based on evaluating policies relating attributes
of users, the environment, objects, etc., with each other and constant values. If no special
consideration for roles is given, this is equivalent to the “pure” ABAC models described in
Section 2.3.1 which can be seen as a more generalized access control model than RBAC (as
it is possible to emulate RBAC configurations in ABAC policies). If special consideration for
roles is provided, such as using role-based separation of duties, the model is considered to be
an ABAC-RBAC hybrid and described in this section.

The most notable Attribute-Centric work that does not fall into the category of “pure”
ABAC is Huang et al.’s “a framework integrating attribute-based policies into role-based access
control” [Huang et al. 2012] that models RBAC on two levels. A front end (or “aboveground”)
level presents itself as a traditional RBAC model extended only with environmental attributes
(applied to both user-role and role-permission assignments) and a back end (or “underground”)
level emulates the simplistic RBAC front end using attribute-based policies. This departmen-
talizing allows routine access control operations and auditing/review to be performed on the
simpler RBAC front end, while still allowing the more complex administration and fine grained
attribute-based policies to be created in the ABAC back end.

Underground level policies are divided into two categories: Role-permission assignment
policies, that determine assignment of permissions to roles and user-role assignment policies
that determine the assignment of users to roles. Both types of policies are specified using First
Order Logic (FOL) expressions that follow structures shown below:

Role-Permission Assignment Policy Structure User-Role Assignment Policy Structure

rule id { rule id {

target { target {

role pattern; user pattern;

permission pattern { role pattern;

operator pattern; environment pattern;

object pattern; }

} condition;

environment pattern; decision.

} }

condition;

decision.

}

Where patterns are FOL expressions that define a set of environmental states, set of roles,
set of users, set of object, etc. as appropriate and comprise the target of the rule (the access
control entities to which this rule applies). The condition is a FOL expression that defines
conditions that must be met for the role or permission to be assigned and the decision defines
the exact role or permissions assignment that will be made. Example 2.13 shows a user-role
assignment policy that grants any role of type “employee” to any user (as no user pattern
is given) located in London. The granted roles are only valid in environments matching the
environmental pattern specified. In this case, only on weekdays and while the system mode is



2.3. Models and Frameworks 47

set to “normal”.

Example 2.13. Example Policy in Huang et al.’s Framework
rule: {

target: {

role pattern(r): r.type = "employee";

environment pattern(e): {

Time = "Weekday"

and Mode = "Normal" }

}

condition: {

u.location = "London";

}

decision: add (u,r,e) in URAe.

}

While this dual level model simplifies administrating a large scale ABAC system, this ben-
efit is only maintained if policies of the back end ABAC model conform to those reviewable in
a standard RBAC framework. Back end policies that grant roles based on non-identity related
attributes (e.g. location, time, etc.) rather than limit activation of or put constraints on previ-
ously assigned roles can easily lead to issues when attempting to determine the set of users who
have access to a given role or permission (as is the case with most ABAC systems). This forces
the role/policy engineer to choose between creating an identityless access control system or
one which is easily auditable.

2.3.2.4 Role-Centric

Jin et al.’s Role-centric Attribute-Based Access Control (RABAC) [Jin et al. 2012b] extends the
NIST RBAC model [Ferraiolo et al. 2001] to create the first attempt at a formal Role-Centric
RBAC-ABAC hybrid model. RABAC follows Kuhn et al.’s approach [Kuhn et al. 2010] of
reducing the number of permissions available to a subject in a traditional RBAC session based
upon the current value of attributes (in this case only user and object attributes). Permission
filtering policies, defined in a custom Common Policy Language (CPL) [Jin et al. 2012a] based
language, are used to reduce the maximum permission set in a given session by checking
each permission against all applicable filtering policies. The applicability of each policy is
determined by a secondary “condition” policy assigned to each filtering policy that determines
if it should be applied to a given permission based on the attributes of the object. This method
is used to constrain permissions without significantly modifying the NIST RBAC model (only
the set of permissions available to a subject in a given session are effected) enabling other
concepts such as separation of duties or the role hierarchy from the NIST model to be directly
applied to RABAC without modification.

While this work does provide a first attempt at a role-centric model, it is unclear if it poses
a significant benefit over preexisting models of PRBAC. Both offer an identity-based solution
that constrains role-permission assignment, the main difference being that PRBAC changes the
process of the role-permission relation such that permission assignment is determined at run-
time while RABAC keeps the relation unchanged and filters permissions out during session
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creation. Jin et al. argue that this difference enables RABAC to make use of the NIST RBAC
administrative model while PRBAC models would require new and more complex administra-
tion models.

2.3.2.5 Unified Models of Access Control

We define Unified Models of Access Control as any models of access control that attempt to
combine two or more non-traditional models of access control into a single unified model. For
the purposes of this section, only models that include ABAC are considered. Cheng et al. at-
tempt to combine Relationship-Based Access Control (ReBAC) with ABAC in their UURACA

model [Cheng et al. 2014] by extending the User-to-User Relationship-Based Access Control
(UURAC) [Cheng et al. 2012] model. ReBAC-based models provide access control for Social
Network Systems (SNS) based on a subject’s relations with other users and entities in the so-
cial network. For example, a user may create an access policy to limit access to viewing their
profile to only friends or friends of friends (i.e. limiting access to the profile to users with a
user-to-user relationship depth of 1 or 2 from the profile owner on the social graph). Cheng et
al.’s UURACA adds attributes to both the nodes (users and resources) and edges (relationships)
of the social graph, representing attributes of users, resources and relations (type, weight, trust,
etc.). A custom policy language (based on the language from UURAC) enables users to restrict
access to owned resources based on a combination of attributes and relations. The following
example (Example 2.14) policies (taken from [Cheng et al. 2014]) restrict access to a profile
based on users who share at least five common friends who are students (P1), restrict access to
a profile to friends in common with “Bob” (P2) and restrict access to a photo to users who are
within 3 hops of the owner on the social graph with a minimum trust value of 0.5 at each hop
(P3).

Example 2.14. Example UURACA Policies
P1: 〈profile access, (ua, (( f f , 2) : ∃[+1,−1], occupation(u) = “student”, count ≥ 5))〉
P2: 〈profile access, (ua, (( f f , 2) : ∃[+1,−1], name(u) = “Bob”, ))〉
P3: 〈read,Photo1, (ua, (( f ∗, 3) : ∀[+1,−1], trust(r) ≥ 0.5, ))〉

While UURACA successfully adds attributes to UURAC, there are some possible privacy
concerns resulting from allowing end users to define their own attribute-based policies (some-
thing that is not unique to UURACA but any ABAC model that allows users to create policies
to protect their own resources/objects). For example, if a user, Alice, has a private profile on a
SNS and an attacker, Eve, wishes to obtain some private information from that profile that is
also an attribute describing Alice (e.g. location, age, gender, occupation, etc.). Eve could gener-
ate a large number of resources that would be appealing to Alice to view (e.g. a link to a picture
with the text “Is this you in this picture?”) and protect each resource with a policy that contains
a guess at the value of one of Alice’s attributes (e.g. (name(u) = “Alice”) ∧ (age(u) = 18),
(name(u) = “Alice”) ∧ (age(u) = 19), (name(u) = “Alice”) ∧ (age(u) = 20), etc.). Alice would
only be able to access the resource with the correct value and Eve would be able to determine
this value by checking which resource is accessed. For example, if the set of resources were
posts containing a link, each to a different image on Eve’s website. Eve could determine the
value of the attribute by matching the accessed image to the policy used to protect the accessed
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resource. This sort of attack could also be conducted more efficiently by using ranges of values
for the attributes Eve is guessing at (e.g. (name(u) = “Alice”)∧((age(u) > 10)∨(age(u) < 20)))
to narrow down the value with fewer resources generated.

Che et al.’s Behaviours and Attributes-Based Access Control (BABAC) [Che et al. 2010] at-
tempts to unify Behaviour-Based Access Control (BBAC) and ABAC to provide a novel access
control solution for network virtualization. In BABAC, user behaviours (a single or sequence
of actions performed by a user) are quantized and divided into three categories; Time-Lasting
Behaviour (a single persistent action that last for a fixed amount of time), Instant Behaviour
(a single action that happens instantly and has no associated length of time), and Multi-Action
Behaviour (A combination or sequence of Time-Lasting and Instant behaviours). These be-
haviours are then used in combination with user and environment attributes to define access
control policies that restrain access to resources both before and after permissions are assigned
(e.g. a user’s access to a resource could be revoked if they spend too much time performing
a single action). The BABAC revocation policy in Example 2.15 (from [Che et al. 2010]) re-
vokes read access to the resource “FinancialPlan” if the user views the resource for more than
60 minutes, attempts to perform an illegal copy operation or more than 3 users are trying to
access this resources at one time. The time-lasting behaviours (TB), instant behaviours (IB),
and multi-action behaviours (MB) that will be used in the policy are specified before the revoke
policy expression.

Example 2.15. Example BABAC Revocation Policy
Resource = "FinancialPlan"

Action = "Read"

TB = "TotalViewTime"

IB = "PerformIllegalCopy"

MB = "TotalSeveringUser"

Revoke(U,R,A) ⇐ { TotalViewTime(U) ≥ 60 minutes

∨ PerformIllegalCopy(U) = true

∨ TotalSeveringUser ≥ 3 users }

To support access requests between independent virtual networks, user attributes are divided
into three types; Global Attributes (user attributes obtained from a virtual network indepen-
dent global attribute authority trusted by all virtual networks), Intra-domain Attributes (user
attributes defined locally by an individual virtual network that access is currently being re-
quested upon), and Trust-domain Attributes (user attributes imported from remote virtual net-
works that are trusted by the current network upon which access is currently being requested).
Example 2.16 shows how these attributes may be used in a BABAC policy to grant access to
a resource (the same financial plan as in Example 2.15). In this case, a user is allowed read
access if they have a global security level of 5 or greater, have a job title of “junior-manager”
in the local network or have a job title of “senior-manager” in a trusted network and are not
located in department C of a trusted network.

Example 2.16. Example BABAC Granting Access to a Resource
Resource = "FinancialPlan"

Action = "Read"

GAttr = "SecureLevel"
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IAttr = "JobTitle", "Location"

TAttr = "JobTitle", "Location"

Allow(U,R,A) ⇐ { SecureLevel(U) ≥ 5

∧ (JobTitle(U) ≥ IAttr(junior-manager)

∨ JobTitle(U) ≥ TAttr(senior-manager))

∧ Location(U) , TAttr(dept.C) }

One last notable effort, is Han et al.’s [Han et al. 2009] work towards a united access control
model that combines ABAC, RBAC and Task-Based Authentication Control (TBAC). In Han
et al.’s united model, TBAC is extended with attribute-based constraints (limited to user and
object attributes) in addition to hierarchical role-based assignment of task permissions. Per-
missions are divided into Executing (permission to execute a task), Supervising (permission to
initiate, approve, dispense, or administrate task execution) and Invoking (permission to initiate
task request and acquire the result) permissions which are granted by roles. ABAC is used
largely for negotiating identityless role assignment with external users and functions similarly
to attribute-based role assignment.

While unified models provide interesting new takes on existing non-traditional models, they
are often limited in their applicability to real world access control scenarios, instead targeting
niche access control scenarios or domains. UURACA’s application is limited to SNS, BABAC
to network virtualization and Han et al.’s united model to systems in collaborative commerce.
Additionally, combining models often leads to increased complexity such as is the case in Han
et al.’s united model where administrators are required to deal with attributes, policies, role
assignments, role hierarchies, workflows and tasks for both internal and external users; all in a
single access control system. While this provides a large number of fine grained configuration
points, it is questionable how manageable or auditable real world implementations would be,
especially in systems with a large number of access control entities.

2.4 Open Problems
As ABAC research is still largely in its infancy, the list of open problems related to ABAC sys-
tems and implementations is extensive. The majority of these problems stem from the increased
complexity attribute and policy-based access control introduces for the sake of increasing the
flexibility and generality of access control policies. While hybrid ABAC models and frame-
works aim to remedy these issues by extending proven traditional models, this is often done
at the cost of flexibility or removing the identityless nature of ABAC. This section outlines
the most common problems identified and discussed in the recent literature (namely the works
reviewed in Section 2.3) relevant to ABAC and to a lesser extent, policy-based access control
in general.

2.4.1 Foundational Models
One frequently discussed issue [Jin et al. 2012a; Hu et al. 2013; Servos and Osborn 2014]
is the lack of an agreed upon reference and/or foundational model of ABAC. While a large
number of ABAC models have been published, they have predominantly been domain specific
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and limited to a particular use case (e.g. web services) or hybrid models that lack the versatility
of “pure” models. Of the generalized models discussed in Section 2.3.1, only three [Jin et al.
2012a; Servos and Osborn 2014; Zhang et al. 2005] are both formal and full models, none of
which have garnered mainstream acceptance as “the standard” model of ABAC.

To date, the most frequent works cited as “the model of ABAC” have been XACML, Wang
et al.’s logic-based framework for ABAC [Wang et al. 2004] and Yuan & Tong’s ABAC for
web services [Yuan and Tong 2005]. However, these works are problematic as foundational
models for a number of reasons. As XACML is simply an access control policy language, it
lacks any kind of formal model of ABAC despite its support for attributes, making it at best
only one component of a larger model. Wang et al.’s logic-based framework, provides a start
towards a generic foundational model but mostly concentrates on modelling policies and their
evaluation and can not be seen as a full model of ABAC. Yuan & Tong’s ABAC model for web
services, while an early effort and the basis for several other models [Kerschbaum 2010; Xia
and Liu 2009], is simplistic and specific to a limited domain. Perhaps the most promising, but
yet to be completed or published, work is the purported effort at NIST towards a formalized
family of ABAC models. During the NIST Attribute Based Access Control Workshop held on
July 17, 2013, limited details on the “Framework of ABAC models” were presented by David
Ferraiolo that defined four families of ABAC models; ABACrule, ABACrule−hier, ABACrel and
ABACrel−history. Unfortunately, to date, few details and no formal definitions are available for
these models (the only source being an unrefereed set of presentation slides [Ferraiolo 2013]).

Beyond model adoption or creation by a standards organization, a possible solution may lie
in the suggestion of Barker [Barker 2009] for access control research to avoid “developing the
next 700 particular instances of access control models” and instead focus on unifying meta-
models. A meta-model of ABAC, or perhaps all policy-based access control in general, could
provide a unified model for describing and reasoning about ABAC without necessitating the
need for creation of new models for each small extension of the concept.

2.4.2 Emulating and Representing Traditional Models

It has been claimed that ABAC is a more general model of access control as it is capable of
emulating the traditional models [Chadwick et al. 2003; Jin et al. 2012a; Lang et al. 2009;
Servos and Osborn 2014; Park and Sandhu 2004]; however, as of now this has only been
demonstrated in the literature in a largely informal and shallow manner. The work by Jin et al.
[Jin et al. 2012a] has presented the most formal effort to date, demonstrating how ABACα can
be constrained to model DAC, MAC and hierarchical RBAC. However, only a single possible
representation is given for each classical model (a number of which assume a partially ordered
set may be used as an attribute’s value) and the separation of duty constraints of RBAC are
not modelled. A deeper exportation and evaluation of the different possible methods of repre-
sentation are required to both develop best practices for aiding in the transition to ABAC (e.g.
converting existing traditional systems to ABAC systems) and formally proving that ABAC
can model all possible DAC, MAC and RBAC-based policies.
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2.4.3 Hierarchical ABAC

In hierarchical RBAC, the role hierarchy allows for roles to be related in a way that more closely
resembles that of actual organizations. This allows for more simplistic administration, both in
terms of role engineering and reviewability of existing role-based policies. Most “pure” models
of ABAC; however, lack this type of inheritance and expressiveness. While a role can be easily
modelled as a single attribute of a subject, this simplistic representation is unable to emulate
the hierarchical nature of RBAC without allowing for complex data types in an attribute’s value
(as is done in Jin et al. [Jin et al. 2012a] ABACα) or unmaintainably complex policies. A more
simplistic means of providing hierarchical administration is required for “pure” ABAC to be
competitive with RBAC and hybrid models.

A possible solution may be found in “attribute user groups” [Servos and Osborn 2014]
(as described and introduced in Chapter 3), hierarchical groups that inherit sets of attributes
from their parent groups and allocate these attributes to their members (similar to how roles
in hierarchical RBAC could be seen as allocating permissions to the role’s membership). This
technique could also be applied to objects and other access control entities onto which at-
tributes may be assigned. Another approach is to allow attributes to have inheritance relations
directly with other attributes, such that a child attribute supersedes the parent attribute in poli-
cies. For example, if both the attributes “cs faculty” and “cs graduate student” are children of
the attribute “cs department”, being assigned “cs faculty” or “cs graduate student” would ful-
fil a policy requiring a user to be assigned the “cs department” attribute. This is similar to the
attribute hierarchies described in Wang et al.’s ABAC framework [Wang et al. 2004] as well as
other models, but potentially limits the usefulness of ABAC as attributes no longer have values
(instead each attribute hierarchy could be seen as a single attribute with members being the
possible values for the attribute).

2.4.4 Auditability

An important aspect of access control for both legal and security reasons is the ability to easily
determine the set of users who have access to a given resource or the set of resources a given
user may have access to (sometimes referred to as a “before the fact audit”). In RBAC, this is
relatively straightforward, normally just requiring the system to calculate the union of the set of
effective privileges from each role the user is assigned. However, in ABAC this is considerably
more complicated [Hu et al. 2013]. As ABAC is an identityless access control system and users
may not be known before access control request are made, it is often not possible to compute
the set of users that may have access to a given resource. Even in cases where the identities of
all users and their assigned attributes are known, it can still be difficult to efficiently calculate
the resulting set of permissions for a given user as all objects would need to be checked against
all relevant policies.

To date, this has largely been addressed with hybrid ABAC models that use attributes sim-
ply for role assignment [Al-Kahtani and Sandhu 2002; Shafiq et al. 2005; Jin and Fang-chun
2006; Cirio et al. 2007; Cruz et al. 2009; Zhu et al. 2008; Wei et al. 2010] (allowing administra-
tors to at least know what roles grant what permissions) or to put constraints on the permissions
assigned to a role [Ferraiolo et al. 2001; Ge and Osborn 2004; Giuri and Iglio 1997; Abdallah
and Khayat 2005; Lupu and Sloman 1997] (favouring an identity-based approach). As these
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methods use hybrid strategies, they come with the disadvantages of the hybrid models they
use (i.e. namely loss of flexibility and identityless access control). ABAM [Zhang et al. 2005]
is one of the few “pure” ABAC models that provides some level of auditability by restricting
subjects to only possibly being assigned permissions in a predefined access matrix; however, it
accomplishes this at the cost of being identityless and requires users to be known and properly
labelled in the access matrix.

It is important that more complete and efficient methods of auditing “pure” ABAC systems
be developed to enable administrators to demonstrate compliance with specific regulations
and directives that require before the fact auditing. Without this ability, ABAC will likely be
unusable in cases where legal or industry regulations prohibit systems that rely solely on after
the fact auditing techniques.

2.4.5 Separation of Duties
Separation of Duties (SoD) is the notion that multiple persons should be required to complete a
sensitive task to limit the potential for both error and fraud. In RBAC, this is supported through
static SoD, where subjects are prohibited from being assigned conflicting roles, and dynamic
SoD, where subjects are prohibited from activating conflicting roles in the same session [Fer-
raiolo et al. 2001]. However, in ABAC, application of this concept has been largely unexplored
and left to future work. It is still unclear to what or how SoD type constraints might be applied
to ABAC models and if additional constraints beyond those possible through policy languages
are required.

Alipour & Sabbari [Alipour and Sabbari 2012] attempt to solve this problem by introducing
“can’t perform” rules that restrict a subject from performing certain actions (operations) on
specified resources. This solution is problematic; however, in that it requires knowledge of both
the subject and their possible conflicts of interest beforehand. Bijon et al. propose an attribute-
based constraint specification language, Attribute-Based Constraints Specification Language
(ABCL) [Bijon et al. 2013], that allows constraints to be placed on both attributes and attribute
assignments. They demonstrate how this language may be used to specify SoD style constraints
and validate its usefulness through a number of use cases. While this work may be part of a
viable solution, it merely defines a language for representing constraints and lacks a formal
model or framework for their use. Finally, a common solution is to use the SoD constraints
from RBAC in hybrid ABAC models that include roles [Jin et al. 2012b; Shafiq et al. 2005;
Cirio et al. 2007; Wei et al. 2010; Han et al. 2009]. However, as with other uses of hybrid
ABAC, it comes at the cost of flexibility or the identityless nature of ABAC.

2.4.6 Delegation
Delegation is a frequently desired access control feature that allows one subject to temporarily
delegate their access rights to a more junior (in terms of access rights) subject. In RBAC
research [Barka and Sandhu 2000a,b] this is often accomplished by enabling delegation of
assigned roles under certain predefined constraints and revocation conditions, but has also been
expressed in terms of partial permission delegation [Wang and Osborn 2011; Zhang et al. 2003;
Wang and Osborn 2006], in which a delegator creates and delegates a temporary role composed
of a subset of their delegatable permissions. While delegation has been partially addressed in
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terms of attribute-based encryption [Waters 2011; Servos et al. 2013], few efforts to date have
been made to apply a delegation model to ABAC.

Such a model of delegation could be applied to both delegation of attributes between users
and delegation of resulting permissions granted by policies. Delegation of attributes could be
partially supported through the use of X.509 attribute certificates [Farrell and Housley 2002;
Farrell et al. 2010]; however, this requires potentially lengthy certificate chains to be transmit-
ted as part of a user’s attribute-based credentials and could also lead to privacy concerns when
sensitive attributes are involved. Moreover, attribute certificates are largely an implementation
detail rather than a formal part of a delegation model. Dynamic delegation of permissions is
more complex as attribute values (particularly for environment attributes like time) may fre-
quently change resulting in different permission assignments. Allowing delegation of granted
permissions may require constant evaluation of relevant policies to ensure permissions are re-
voked when the delegator’s access is removed due to a change in attributes, an approach that is
both complicated and inefficient.

2.4.7 Attribute Storage and Sharing
When multiple attribute sources are used in an ABAC system (e.g. using attribute authori-
ties from different organizations in a distributed system) complications can arises in terms of
both evaluating the trustworthiness of attributes and ensuring that differing attribute sources
are using compatible attributes (e.g. using the same namespace and data type for common
attributes). The issue of trustworthiness is often dealt with by relying on pre-existing trust
relations negotiated between organizations before access control takes place; however, in peer-
to-peer scenarios this can be vastly more complicated. Shafiq et al. [Shafiq et al. 2005] offer a
potential solution in their hybrid ABAC model that includes a trust evaluation and negotiation
framework that both provides a trust assessment of claimed attributes and a means to dynam-
ically establish trust between collaborating organizations. Lee et al. [Lee et al. 2008] propose
an “attribute aggregation architecture” where attributes are gathered from neighbouring peers
and evaluated using a reputation-based trust scheme in which “each peer decides its reputation
about other peers based on its own experiences, and the trustworthiness of a peer is evaluated
with the assist of aggregated reputation”. It is possible that Shafiq’s, Lee’s other research in dy-
namic trust negotiation could be easily applied to “pure” ABAC models; however, most work
in this area has assumed attributes are derived from a trusted source.

Ensuring attributes from different sources are compatible would likely require a commonly
accepted namespace or ontology of attribute names or alternatively some means of mapping
attributes to equivalent representations (as suggested in [Hu et al. 2013]). For example, if one
organization’s attribute store uses the name “job title” and another “role” to describe the same
attribute it would be difficult to create policies that are applicable to members of both organi-
zations without a detailed mapping between the two sets of attributes or complex policies that
take into account the differences in attribute composition in each store. A secondary issue in
attribute sharing is ensuring the confidentiality of sensitive user attributes. This is particularly a
concern when ABAC systems are used in domains such as health care where leaking attributes
about a user or object could be potentially compromising. Current work related to attribute pri-
vacy or confidentiality has largely been limited to attribute-based encryption applications but
some efforts have been made towards generic privacy preserving attribute sharing protocols
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[Camenisch et al. 2010; Ardagna et al. 2010; Esmaeeli and Shahriari 2010; Zhang et al. 2013].

2.4.8 Scalability
One of the important considerations before adopting ABAC (as described in the NIST Guide
to ABAC Definition and Considerations [Hu et al. 2013]) is the scalability of ABAC systems.
Unlike traditional access control technologies, such as RBAC, that have a proven track record
in being adopted in large scale real world systems, ABAC is still largely unproven in terms
of practical scalability. ABAC requires complex interactions between access control compo-
nents that may be distributed among different network resources or even across organizational
boundaries. In large systems with thousands of users, permissions, and policies, it is unclear
how manageable ABAC solutions would be both in terms of administration and physical com-
puting resources required. Real world case studies of large scale systems utilizing ABAC
concepts are required to determine the feasibility and usability of ABAC in such scenarios.

2.4.9 Administration and User Comprehension
A frequently overlooked aspect of ABAC is the “human aspect” or how usable such systems
may be for users, access control administrators and policy engineers. Lee & Winslett [Lee and
Winslett 2006] discuss the human factor challenges related to ABAC solutions and identify
a number of open problems in ABAC research related to administration and usability. They
describe the three main challenges as “Access Control Comprehension”, “Technology Man-
agement” and “Policy Specification and Maintenance”.

Lee & Winslett characterize “Access Control Comprehension” as the end user’s ability to
comprehend the access control decisions made regarding their access requests. In the classical
models, access control decisions are relatively straightforward (e.g. in RBAC, users are either
members of a role with the effective permissions they desire or not). However, in ABAC,
decisions may be the result of complex policies that not only involve the attributes of the
user but attributes of other, frequently changing, access control entities. Without sufficient
understanding of both ABAC and the existing policies contained in the system, access decisions
may seem arbitrary if not entirely magical from an end user perspective. Lee & Winslett point
to efforts by Yao et al. towards visualization of such decisions [Yao et al. 2005] as a first step
towards a potential solution.

“Technology Management” concerns a user’s ability to manage their access control cre-
dentials. In ABAC, subject credentials can be rather complex, consisting of technologies such
as cryptographic credentials, X.509 certificates and attribute sources from multiple distributed
attribute stores. Lee & Winslett point to the research by Whitten & Tygar [Whitten and Ty-
gar 1999] in which users had extreme difficulty managing PGP certificates for signing and
encrypting e-mails to argue that end users of ABAC systems will have similar if not more ex-
treme difficulties. This burden is worsened in systems that rely on end users to select the subset
of attributes to be activated in a given session. While the solution to this problem likely lies in
automating credential management, this has been largely unexplored in relation to ABAC and
warrants further study.

“Policy Specification and Maintenance” addresses challenges related to the increased com-
plexity inherent in ABAC administration and policy engineering. To date, almost no ABAC
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models provide complete (or even partial) administration models while at the same time requir-
ing administrations and engineers to provide policies composed in complex XML-based policy
languages such as XACML. Furthermore, the potentially distributed nature of ABAC means
administration is no longer centralized but divided among multiple policy administration points
and attribute stores. This significantly raises the training and education requirements for com-
petent administrative users as well as hindering their ability to review current configurations
for security issues. Potential solutions may be found in analysis tools that allow users with lim-
ited knowledge of mathematical or Boolean logic to create and evaluate realistic access control
policies, in automated tools for mining ABAC policies [Xu and Stoller 2014, 2013, 2015] and
in new administrative access control structures such as hierarchical attribute user and object
groups [Servos and Osborn 2014] (introduced and described in Chapter 3).

2.4.10 Formal Security Analysis

While a number of works have sought to provide tools to analyze the security and safety of
the traditional models (namely RBAC) [Li and Tripunitara 2006; Sasturkar et al. 2006; Stoller
et al. 2007] and the policies they enforce, similar efforts for ABAC are still in their infancy. The
most relevant efforts to date (e.g. [Bryans 2005; Lin et al. 2010; Fisler et al. 2005; Kolovski
et al. 2007]) have focused on reasoning about and analysing access control policies that may
support attribute-based concepts independently of a formal access control model (e.g. policies
written in XACML). Although many of these concepts and tools can be applied to the poli-
cies supported by ABAC models (particular if they are in a standardized policy language like
XACML), they alone can not provide a full security analysis of a given ABAC model without
taking into consideration the properties of the underlying model and the way in which policies
are combined and enforced.

A sensible starting point for future ABAC focused security analysis work may be found
in adapting the techniques used for RBAC such as those employed by Li & Tripunitara [Li
and Tripunitara 2006]. Li & Tripunitara use security analysis techniques [Li and Winsborough
2003] to view RBAC as a state-transition system in which state changes occur via adminis-
trative operations, with the goal of determining if undesirable states are possible. Whilst they
primarily use this state-transition system to explore security problems resulting from RBAC ad-
ministration, a number of the queries they define on a given system state could be adapted for
analysing ABAC systems. In particular, the following queries could be of interest if attributes
are considered in place of roles:

Simple Safety If a state exists where a given (presumably untrusted) user can gain member-
ship in a given role only intended for trusted users. A negative result would imply that the
system is safe.

Simple Availability If a given permission is attainable in every possible state to a given (pre-
sumably trusted) user. A positive result would imply that the permission is always available
to the user.

Bounded Safety If in every possible state, only a given subset of (presumably trusted) users
can obtain the given permissions. A positive result would imply that the system is safe.



2.5. Conclusions & FutureWork 57

Liveness Whether a given permission is always accessible to at least one user. A negative re-
sult (i.e. that the permission is always accessible) would imply the liveness of the permission
holds in the system.

Mutual Exclusion If there exists no possible state where a user can be a member of two
distinct roles (r1 and r2). A positive result would imply that roles r1 and r2 are mutually
exclusive.

Containment Whether in every reachable state any user who has a given permission is a
member of a given role. A positive result would imply that safety property is held (i.e. that
all holders of a given permission are also in a given role) and an availability property is held
(i.e. that a given permission is available to all members of a given role).

Adapting such queries to ABAC systems is challenging due to the increased flexibility pro-
vided by attribute-based policies and its identityless nature in which users may not be known
until runtime. This posses similar problems as faced when auditing ABAC systems (as dis-
cussed in Section 2.4.4), namely that efficiently calculating the result of such queries is dif-
ficult when a large number of policies and attributes are present in a system. Rather than
simply considering system states created by a combination of users, roles and permissions (as
in RBAC), analysis of ABAC system would have to account for all possible combinations of
attributes (including possible combinations of values for each individual attribute), policies and
permissions. Leading to a drastically larger state space.

2.5 Conclusions & Future Work

2.5.1 ABAC Survey

This chapter has introduced a taxonomy of current areas of ABAC and Policy-Based Access
Control (PBAC) research, provided a literature review of current attempts at formalizing ABAC
models, and identified a number of open problems in the literature. The taxonomy introduced
in Section 2.2 subdivides the current body of ABAC related research into related categories
that are useful when discussing and comparing recent efforts. The review of “pure” and hybrid
ABAC models in Section 2.3 provides one of the most comprehensive summaries of existing
academic work towards ABAC model creation and has proven useful in identifying a number
of areas for future work. The open problems examined in Section 2.4 serve as potential starting
points for new research efforts.

As the literature surveyed in this work covered a number different types of ABAC models
in breadth, there is still room for future survey efforts directed at covering specific categories
or aspects of models in depth. An in-depth comparison and analysis of how current models
represent attribute-based policies, for example, would be of benefit to the community. As
would a more in-depth look at a specific subcategories of models (e.g. a longer review of
Pure General ABAC Models). Reviews of non-model related attribute topics could also be of
interest, such as attribute mining, attribute storage and sharing, attribute confidentiality and
supporting model independent architectures.
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Since the date this survey was conducted (October 20th, 2014) there have been a number
of publications relating to attribute-based models of access control. Some of these are touched
upon in Chapter 7 Section 7.3.1, but due to the rapid rate of developments in this field there
is a clear need for ongoing reviews and systematizations of the literature in this area. Further
surveys targeting ABAC models published after this survey could be useful to cover more
recent advancements.

2.5.2 Addressing the Open Problems
The open problems (Section 2.4) identified in this chapter are a potential road block for the
adoption and standardization of ABAC. A number of these problems are addressed by the
subsequent chapters in this thesis, while others are left to future work or are currently being
pursued by others (some of which are discussed in Chapter 7).

Chapter 3 addresses the lack of hierarchical ABAC models (an issue discussed in Sec-
tion 2.4.3) by introducing HGABAC, a formal ABAC model with support for hierarchical user
and object attribute groups. HGABAC also attempts to address the problem of administrator
and user comprehension (an issue discussed in Section 2.4.9) via attribute groups. Attribute
groups allow for the assignment of multiple related attributes to a user or object via member-
ship in a group, helping administrators to assign or modify related collections of attributes at
a time rather than individually. It is also shown that the traditional models (RBAC, DAC, and
MAC) can be emulated using these groups (aiding with the issue of representing the traditional
models as mentioned in Section 2.4.2).

Chapter 5 provides a supporting architecture for HGABAC that fills in the gaps between
model and real world implementation, providing details about attribute storage, sharing, trans-
mission and namespaces (open problems described in Section 2.4.7). Some investigation into
the scalability of the system is also provided (addressing potential issues of scale brought up
in Section 2.4.8) and new attribute certificate format is defined to enable the “off-line” sharing
and proof of attribute ownership.

Chapter 4 and Chapter 6 are directed at the problem of delegation in ABAC (a problem
defined in Section 2.4.6). Chapter 4 outlines a number of potential strategies for incorporat-
ing delegation into current ABAC models (namely HGABAC), while Chapter 6 takes one of
these strategies, User-to-User Attribute Delegation, and develops it into a useable delegation
model with extensions for HGABAC and the HGAA architecture. The delegation strategies
introduced in Chapter 4 have also been used by others (reviewed in Chapter 7 Section 7.1.3)
to create ABAC delegation models following strategies other than User-to-User Attribute Del-
egation.

The problems of Auditability (Section 2.4.4), Security Analysis (Section 2.4.10), and Sep-
aration of Duties (Section 2.4.5) are not directly addressed by this thesis, but in some cases,
are left for future work (described in Chapter 7 Section 7.3).
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3.1 Introduction

Until recently, access control research and real world access control implementations have
largely fallen under one of the three traditional models of access control: Discretionary Access
Control (DAC) [Lampson 1974], Mandatory Access Control (MAC) [Bell and Padula 1974;
Denning 1976] or Role-Based Access Control (RBAC) [Ferraiolo et al. 2001; Sandhu et al.
1996]. In these models, access control decisions are largely based on the identity of the user.
In DAC this often takes the form of an Access Control List (ACL) mapping users to permis-
sions on an object, while MAC is based around a security lattice controlling the direction of
information flow. In dynamic environments where information sharing between systems and
users from different security domains is common, these identity-based access control models
are inadequate. While RBAC provides a more generalized model than MAC or DAC [Osborn
et al. 2000], it also falls short in cases where users and their respective roles in the system are
poorly defined beforehand. A secondary issue, common among these models, is the simplicity
of the access control policies. In the case of RBAC, all access control policies must fit the form
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of “if a user is assigned a role X they are granted the set of permissions Y”. However, this is
insufficiently flexible for many real world scenarios. For example, a bank may only permit an
employee with the role “teller” to access clients’ accounts during set times or limit their access
to accounts based on a system wide threat level. In both cases, the policy would be too complex
to express in a traditional RBAC model.

To date, researchers have largely approached this problem by extending foundational RBAC
models to compensate for inadequate flexibility required for their particular use case (e.g.
[Chandran and Joshi 2005; Kuhn et al. 2010; Chen and Crampton 2011]). However, there
has been a growing demand from both government and industry for a more general and dy-
namic model of access control, namely Attribute-Based Access Control (ABAC). Rather than
basing access control decisions on a user’s identity like the traditional methods, ABAC bases
access control around the attributes of a user, the objects being accessed, the environment and
a number of other attribute sources. Ideally, these are all properties of the elements already
existing in the system and do not need to be manually entered by administration (e.g. many
of the attributes about a document come from its existing metadata; author, title, etc.). Access
policies can be created, limiting access to certain resources or objects, based on the result of a
boolean statement comparing attributes, for example “user.age >= 18 OR object.owner

== user.id”. This allows for flexible enforcement of real world policies, while only requiring
knowledge of some subset of attributes about a given user.

Despite the demand for and potential advantages of ABAC, little has been accomplished in
the way of formalizing foundational models and large scale adoption is still in its early stages
(an open problem for ABAC research as discussed in Chapter 2 Section 2.4.1). The work
detailed in this chapter seeks to provide a formalized hierarchical model of ABAC, entitled
Hierarchical Group and Attribute-Based Access Control (HGABAC), which introduces a group
based hierarchical representation of object and user attributes that is lacking in current models
(a problem identified in Chapter 2 Section 2.4.3). HGABAC is intended to be a starting point
that is detailed enough for real world use but generic enough to emulate traditional models of
access control (another open problem, Chapter 2 Section 2.4.2).

The rest of this chapter is organized as follows. Section 3.2 reviews the existing work
related to attribute-based access control models and current efforts towards standardization.
Section 3.3 outlines our proposed model of ABAC, HGABAC, and provides a formal specifi-
cation, as well as details of the policy language used (Section 3.3.2) and the group hierarchy
(Section 3.3.1.6). Section 3.4 gives an example use case and evaluates the solution HGABAC
provides. Section 3.5 demonstrates how HGABAC can be configured to emulate DAC, MAC
and RBAC access control policies. Finally, Section 3.6 details our conclusions and plans for
future work.

3.2 Related Work
One of the most frequently referenced works in the ABAC literature is the eXtensible Access
Control Markup Language (XACML) standard [Godik and Moses 2002]. XACML is an XML-
based access control policy language that is notable for its support of attribute-based policies
and use in multiple access control products. While XACML supports attribute-base access
control concepts and hierarchical resources, it intently lacks any kind of formal model (focus-
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Table 3.1: Comparison of HGABAC with notable models of attribute-based access control.

Logic-based
Framework
for ABAC

[Wang et al.
2004]

ABACα

[Jin et al.
2012]

ABAC for
Web

Services
[Yuan and

Tong 2005]

WS-ABAC
[Shen and

Hong 2006]

ABMAC
[Lang et al.

2009]
HGABAC

Hierarchical
Hierarchical
attributes, no
user groups

3

Object
Attributes 3 3 3 3 3

User
Attributes 3 3 3 3 3 3

Environment
Attributes 3 3 3 3

Connection
Attributes

Shown in
example but
not model

3

Administrative
Attributes 3

General
Model 3 3

For web
services

For web
services

For grid
computing

3

Formal Model
Only models
policies and
evaluation

3 Simplistic Simplistic 3 3

Can Model
DAC, MAC,
and RBAC

Not
demonstrated

3
Not

demonstrated
Not

demonstrated
Not

demonstrated
3

ing primarily on being a policy language) and instead relies on the implementing system to
apply an underlying model of access control. Another related but distinct research area from
ABAC is Attribute-Based Encryption (ABE), where objects are encrypted based on attribute
related access policies. In Ciphertext-Policy Attribute-Based Encryption (CP-ABE) style ABE
an attribute-based policy is used to encrypt an object and a user’s key consist of a set of at-
tributes describing that user [Bethencourt et al. 2007; Servos et al. 2013]. While ABE, much
like XACML, lacks any kind of formal ABAC model and has rather simplified access policies,
it does provide an interesting means of enforcing ABAC policies outside of the security domain
in which they originate.

Various works have attempted to informally describe ABAC or have taken the first steps
towards formalization. The most notable of these are summarized and compared to our model
in Table 3.1. Yuan and Tong [Yuan and Tong 2005] describe the ABAC model in terms of
authorization architecture and policy engineering and give an informal comparison between
ABAC and traditional role-based models. Shen and Hong [Shen and Hong 2006] present
WS-ABAC, an ABAC model designed for web services based around XACML. However, the
model presented in this work is limited and mostly describes an architecture to use XACML
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and attribute-based policies to provide authentication for web services. Lang et al.’s ABMAC
model[Lang et al. 2009] aims to bring ABAC like access control to grid computing. While this
model is based on attribute-based policy decisions, it has several key differences in the policy
description and policy evaluation methods. This work is of note as it mentions ABAC’s ability
to represent the traditional models using a single policy language.

Wang et al.[Wang et al. 2004] propose a logic-based framework for ABAC based on logic
programming where policies are specified as “stratified constraint flounder-free logic pro-
grams that admit primitive recursion”. While their framework introduces hierarchical attributes
(something lacking from other models), it is largely focussed on the representation, consistency
and performance of attribute-based policies and their evaluation over providing a workable
model of ABAC. Several critical components required for a usable model are absent, including
object attributes (the only attributes considered are user attributes) and they omit any kind of
formalization of ABAC aspects outside of policies and their evaluation (e.g. there is no mention
of objects and only access control on services/operations is considered).

Lastly, and most promising is the work by Jin et al. [Jin et al. 2012] towards a general-
ized and formalized model of ABAC with constraints for the traditional models, which they
call ABACα. Their model provides a first step “to develop a formal ABAC model that is just
sufficiently expressive to capture DAC, MAC and RBAC” which allows configuration of con-
straints on attributes at creation and modification time as well as policies. While this work
provides a sufficient basis for new models of ABAC, it (intentionally) lacks components that
would be necessary for a real world implementation, such as attribute and object hierarchies, a
user friendly policy language and environment attributes.

Our model, HGABAC, is distinct from other models in several regards. Most notably, the
graph based user group hierarchy provides several new interesting means of allowing policy
administrators to represent the traditional models in an ABAC framework (allowing the hier-
archy to model MAC and RBAC in an intuitive way, rather than a partially ordered set as is
done in ABACα [Jin et al. 2012]). These hierarchical representations of MAC and RBAC are
demonstrated in Section 3.5. The object group hierarchy allows for objects to be categorized
into collections of similar types of objects (e.g. a collection of only health care record objects)
and have common attributes applied to all members of the group. This reduces the amount
of manual intervention required to tag similar objects with a common attribute and value pairs
and reduces the number of object attribute assignments required (as evaluated in Section 3.4.2).
Additionally, several efforts are made to create a model more suited to real world application
without losing descriptive power or flexibility in terms of policies that may be enforced; a fully
specified and intuitive policy language is presented (in Section 3.3.2) loosely based on C style
boolean statements and a more rich selection of attribute sources is allowed. Attributes based
on the user’s current connection to the system and administrative attributes are supported which
are lacking in other models. Finally, HGABAC uses a strongly typed system to represent at-
tribute values (i.e. an attribute must have a predefined data type, e.g. integer, floating point,
set, etc.). This helps enforce consistency in policies and attribute value assignments as well as
helping to prevent any possible ambiguity in policies (e.g. preventing any type mismatches).
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3.3 HGABAC Model

3.3.1 Formal Model
3.3.1.1 Basic Elements and Definitions

We define the base elements of the HGABAC model, as shown in Figure 3.1, as follows:

• Users (U): set of current human and non-human entities that may request access on
system resources through sessions.

• Objects (O): set of system resources (files, database records, devices, etc.) for which
access should be limited.

• Operations (Op): set of all operations provided by the system that may be applied to an
object (e.g. read, write, create, delete, update etc.).

• Policies (P): set of all current policy strings following the format of our policy language
defined in Section 3.3.2.

• Sessions (S): set of all user sessions, such that each element, s is a tuple of the form
s = (u ∈ U, a ⊆ effective(u ∈ U), con atts) where u is the user who activated the session,
con atts is the set of connection attributes for the session such that ∀c ∈ con atts : c =

(name, values) and a is the subset of the user’s effective attributes they wish to activate
for the given session (effective(u) is the set of all attributes a user is assigned either
directly through the UAA relation or indirectly through group membership). Policies are
evaluated on the basis of the activated attributes in a user’s session rather than the total
set of the user’s assigned and inherited attributes.

• Permissions: pairing of a policy string and a set of operations, such that perm = (p ∈
P, op ⊂ Op). Access to perform a set of operations, op, on a given object is only allowed
if there exists a permission that contains a policy, p, that is satisfied by a given set of
attributes corresponding to the requesting user’s session, object being accessed and the
current state of the connection, environment and administrative attributes in the system.
For example, a policy paired with a read operation, “user.id = object.author”,
would allow read access to all objects for which the user is also the author.

3.3.1.2 Attributes

HGABAC defines attributes to be (name, value, type) triples where the name is a unique identi-
fier and value is an unordered set of atomic values of a given type or the null set. Type restricts
the data type of the atomic values (e.g. string, integer, boolean, etc.) to a system defined data
type. Attributes represent some descriptive characteristic of the entity to which they are as-
signed. For example, a user might have attributes describing their name, age, employee id,
etc., while an object might have attributes describing its author, owner, file type, etc. The set
of all attributes (TA) is divided into five subsets based on their origin and to which entity or
object they may be applied:
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• User Attributes (UA): the set of attribute name, type pairs that may be applied to users
such that ∀a ∈ UA : a = (name, type) and each element of UA has a globally unique
name (i.e. there cannot be two elements with the same name but different types). Note
that value is left out of the definition of UA as user attributes are given a set of values
when assigned to users directly or to groups (in the UAA and UGAA relations).

• Object Attributes (OA): the set of attribute name, type pairs that may be applied to
objects such that ∀a ∈ OA : a = (name, type) and each element of OA has a globally
unique name (i.e. there cannot be two elements with the same name but different types).
As with UA, value is left out of the definition of OA as object attributes are given a set of
values when assigned to objects directly or to groups (in the OAA and OGAA relations).

• Environment Attributes (EA): the set of attribute (name, value, type) triples that rep-
resent the current state of the system’s environment (e.g. the current time, number of
active users, etc.) such that ∀a ∈ EA : a = (name, value, type) and each element of EA
has a globally unique name (i.e. there cannot be two elements with the same name but
different types or values). What properties of a system’s environment are available as
environment attributes is left to the implementation.

• Connection Attributes (CA): the set of attribute name, type pairs that correspond to
attributes derived from and available for each connection to the system such that ∀a ∈
CA : a = (name, type) and each element of CA has a globally unique name (i.e. there
cannot be two elements with the same name but different types). What properties of the
connection are available as connection attributes is left as a implementation decision;
however, at a minimum some kind of unique session id should be included.

• Administrative Attributes (AA): the set of attribute (name, value, type) triples that are
defined by administrators (including automated administrative tasks and programs) that
rarely change and apply to all policies which reference them such that ∀a ∈ AA : a =

(name, value, type) and each element of AA has a globally unique name. What adminis-
trative attributes are available will change at runtime based on both the implementation
and actions of administrators.

• Total Attributes (TA): set of all attributes that exist in a given system such that T A =

UA ∪ OA ∪ CA ∪ EA ∪ AA.

3.3.1.3 Groups

Groups and their hierarchies both simplify administration tasks, allowing system administrators
to assign attributes to groups of users or objects at once rather than directly, and allow for more
intuitive and expressive configuration possibilities than current ABAC models (including in the
task of emulating the traditional models as shown in Section 3.5). Groups, their hierarchy, and
memberships are created by system administrators in conjunction with and at the same time
as policy creation. Section 3.3.1.6 details the group hierarchy, while user and object group
definitions and membership are defined below:
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• User Groups (UG): set of all current user groups, where each element is comprised of a
tuple, g, such that g = (name, u ⊆ U, p ⊆ UG) where name is a globally unique identifier,
u is the set of members of the group, and p is the set of the group’s parents in the user
group graph.

• Object Groups (OG): set of all current object groups, where each element is comprised
of a tuple, g, such that g = (name, o ⊆ O, p ⊆ OG) where name is a globally unique
identifier, o is the set of members of the group, and p is the set of the group’s parents in
the object group graph.

3.3.1.4 Relations

We define the following relations between the base elements, groups and attributes:

• Direct User Attribute Assignment (UAA): user attribute assignment relation contain-
ing user, attribute name, value triples such that:

∀uaa ∈ UAA : uaa = (u ∈ U, att name, values) (3.1)

where att name ∈ {name | (name, type) ∈ UA} and values is some set of elements such
that each element of values is of the same data type (type) and (att name, type) ∈ UA.
There may exist only one tuple in UAA for every user, att name pair.

• Direct Object Attribute Assignment (OAA): object attribute assignment relation con-
taining object, attribute name, value triples such that:

∀oaa ∈ OAA : oaa = (o ∈ O, att name, values) (3.2)

where att name ∈ {name | (name, type) ∈ OA} and values is some set of elements such
that each element of values is of the same data type (type) and (att name, type) ∈ OA.
There may exist only one tuple in OAA for every object, att name pair.

• User Group Attribute Assignment (UGAA): user group attribute assignment relation
containing user group name, attribute name, value triples such that:

∀ugaa ∈ UGAA : ugaa = (group name, att name, values) (3.3)

where group name ∈ {name | (name, u, p) ∈ UG} and att name ∈ {name | (name, type) ∈
UA}. values is some set of elements such that each element of values is of the same data
type (type) and (att name, type) ∈ UA. There may exist only one tuple in UGAA for
every group name, att name pair.

• Object Group Attribute Assignment (OGAA): object group attribute assignment rela-
tion containing object group name, attribute name, value triples such that:

∀ogaa ∈ OGAA : ogaa = (group name, att name, values) (3.4)
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where group name ∈ {name | (name, u, p) ∈ OG} and att name ∈ {name | (name, type) ∈
OA}. values is some set of elements such that each element of values is of the same data
type (type) and (att name, type) ∈ OA. There may exist only one tuple in OGAA for
every group name, att name pair.

3.3.1.5 Mappings

The following are the most important formal functions in the HGABAC model.

• direct: Mapping of a user, object, or group to the attribute name, value pairs directly as-
signed to it in the UAA, OAA, UGAA or OGAA relation (i.e. not including inherited at-
tributes or attributes from group membership). direct is defined as:

direct(x) =


{(n, v) | (x, n, v) ∈ UAA}, if x ∈ U
{(n, v) | (x, n, v) ∈ OAA}, if x ∈ O
{(n, v) | (name(x), n, v) ∈ UGAA}, if x ∈ UG
{(n, v) | (name(x), n, v) ∈ OGAA}, if x ∈ OG

(3.5)

where name(x) is the name of the given group, n is an attribute name, v is a set of valid
values for that attribute and x ∈ U ∪ O ∪ UG ∪ OG.

• consolidate: Mapping of a set of attribute name, value pairs which may contain multiple in-
stances of the same name to a set of attribute name, value pairs where each name occurs only
once. Value sets are unioned together for pairs with the same attribute name. consolidate is
defined as:

consolidate(x) = {(n, v1 ∪ v2) | (n, v1) ∈ x ∧ (n, v2) ∈ x} (3.6)

where x is sets of attribute name, value pairs, n is an attribute name, v1 and v2 are sets of
values.

• member: Mapping of a User or Object to the set of groups for which they are a member.
member is defined as:

member(x) =

{(n, u, p) | (n, u, p) ∈ UG ∧ x ∈ u}, if x ∈ U
{(n, o, p) | (n, o, p) ∈ OG ∧ x ∈ o}, if x ∈ O

(3.7)

where n is the name of a group, u is a subset of U, o is a subset of O, p is a subset of UG or
OG and x ∈ U ∪ O.

• inherited: Mapping of a user, object or group to its set of inherited attributes (i.e. the set of
attributes assigned indirectly through the group hierarchy or group membership). inherited
is defined as:
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inherited(x) = consolidate(
{(n, v) | g ∈ member(x) ∧ (n, v) ∈ consolidate(direct(g) ∪ inherited(g))}, if x ∈ U ∪ O
{(n, v) | g ∈ parents(x) ∧ (n, v) ∈ consolidate(direct(g) ∪ inherited(g))}, if x ∈ UG ∪ OG
∅, if name(x) = min group

)
(3.8)

where parents(x) is the set of parents for the given group, n is an attribute name, v is a set
of valid values for n and x ∈ O ∪ U ∪ UG ∪ OG.

• effective: Mapping of a user, object, or group to their effective attributes (i.e. all attributes
inherited or directly assigned). e f f ective is defined as:

effective(x) = consolidate(direct(x) ∪ inherited(x)) (3.9)

where x is a user, object or group (i.e. x ∈ U ∪ O ∪ OG ∪ UG).

• name: Mapping of a group or attribute to its assigned name. name is defined as:

name(x) = x(1) (3.10)

that is, the name is the first element of the tuple in both the case of groups and attributes,
and x ∈ OG ∪ UG ∪ TA.

• parents: Mapping of a group to its set of parents. parents is defined as:

parents(x) = x(3) (3.11)

that is, the set of a groups where parents is the third element of the tuple in both the case of
user and object groups, and x ∈ OG ∪ UG.

• authorized: P, S ,O→ {true, f alse, unde f }

Function which determines if a user session passes the given policy given the current value
of the environment and administrative attributes for a given object, where P is the set of
all policies, S is the set of all sessions and O is the set of all objects. true and f alse are
returned as expected based on the evaluation of the boolean policy rule; unde f is returned
if the policy cannot be evaluated (e.g. an object or user attribute referred to in the policy is
not present in the attribute sets or incompatible types are compared).
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Min Group
{}

Undergrads
{(student_level, {1}), 

(room_access, {MC8, MC10})}

Staff
{(employe_level, {1}), 

(room_access, {MC355})}

Gradstudents
{(student_level, {2}), 

(room_access, {MC342, MC325})}

Faculty
{(employe_level, {2}), 

(room_access, {MC320})}

Figure 3.2: Example user group hierarchy represented as a graph. The large bold text denotes the
group’s name, beneath which the set of directly assigned attributes is shown.

3.3.1.6 Group Graph

The group graph allows administrators to assign attributes in a more natural way that matches
their organization hierarchy and is reminiscent of the role hierarchy in RBAC. This enables
administrators to not only assign, update or remove attributes to/from groups of users and
objects at a time (rather than individually), but create parent/child relations between these
groups such that child groups inherit the attributes of their parents. We show (in Section 3.4)
that this results in fewer overall assignments (of both attributes and group memberships) when
compared to traditional ABAC models, thus leading to fewer relations between attributes and
users/objects/groups for administrators to manage.

HGABAC represents the group hierarchy as a directed acyclic graph with each group a
vertex and each edge a parent/child relation between the groups such that the edge is directed
to the parent. Additionally, all paths in the graph must eventually end at a special min group
that has no parents and no assigned attributes. A group, g, can only have min group as a parent
if it has one and only one parent such that effective(g) = direct(g) and inherited(g) = ∅. The
parent/child relation between any two related groups is defined such that group c is a child of
group p iff:

∀(n, v1) ∈ effective(p) :
∃!a ∈ effective(c) :a = (n, v2) ∧ v1 ⊆ v2

(3.12)

A child group must have one attribute for each effective attribute assigned to the parent group,
such that the attribute has the same name and the parent’s attribute’s value is a subset of the
child’s attribute’s value. Thus, the effective attributes for a group, g, are calculated as:

effective(g) = consolidate(direct(g) ∪ inherited(g)) (3.13)

Users’ and objects’ effective attributes are calculated in a similar way, consolidating the values
of directly assigned and inherited attributes.

An example user group hierarchy is shown in Figure 3.2. In this example the set of effective
attributes of groups Undergrad and Staff are the same as their set of direct attributes as they
both inherit from min group. The group Faculty inherits the attributes (employe level, {1})
and (room access, {MC355}) from the group Staff such that the effective attributes of Faculty
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Table 3.2: HGPL truth table for AND, OR and NOT operations.

X Y X AND Y X OR Y NOT X
TRUE TRUE TRUE TRUE FALSE
TRUE FALSE FALSE TRUE FALSE
FALSE TRUE FALSE TRUE TRUE
FALSE FALSE FALSE FALSE TRUE
TRUE UNDEF UNDEF TRUE FALSE

UNDEF TRUE UNDEF TRUE UNDEF
UNDEF FALSE FALSE UNDEF UNDEF
FALSE UNDEF FALSE UNDEF TRUE

UNDEF UNDEF UNDEF UNDEF UNDEF

will be (employe level, {2, 1}) and (room access, {MC320, MC355}). Similarly, the group
Gradstudents inherits attributes from both the groups Undergrads and Staff such that the set of
effective attributes for Gradstudents is {(employe level, {2, 1}), (room access, {MC325, MC8,
MC10, MC355})}.

The object group hierarchy has the same properties as the user group hierarchy (being a
directed acyclic graph, etc.), and is set up in a similar way with a min group place holder being
the ancestor of all groups. In implementations, of HGABAC it is likely that both the user and
object group graphs could be consolidated into a single graph with the same min group and
treated similarly so long as constraints are enforced so no object group may inherit from a user
group and no object group may have a user attribute assigned (and vice versa).

Both the user and object group graphs are generated by system administrators as part of
policy creation (in conjunction with creating HGPL policies and assigning attributes). Tools
for automating group graph generation, group membership, attribute assignment and verifying
their correctness for given policies is out of the scope of this work and left to future work.

3.3.2 Policy Language
In HGABAC, access control decisions are based on the evaluation of Hierarchical Group
Policy Language (HGPL) policies. HGPL is a boolean rule based policy language com-
paring attributes and constants, purpose-built for HGABAC. Hierarchical Group Policy Lan-
guage (HGPL) differs from current approaches such as ABACα’s CPL[Jin et al. 2012] or
XACML[Godik and Moses 2002] in that it is designed to be lightweight, intuitive and easy
to use while also being efficient in terms of parsing and interpreting (an evaluation of the Hi-
erarchical Group Policy Language (HGPL) interpreter’s performance is given in Chapter 5
Section 5.5.3).

HGPL is based around C-style Boolean expressions in which the result of logical opera-
tions (AND, OR, NOT) on ternary values (TRUE, FALSE, UNDEF) are determined based on the AND,
OR and NOT truth tables from Kleene K3 logic [Kleene 1938] as shown in Table 3.2. A policy
evaluated to UNDEF is equivalent to FALSE in terms of access control decisions (i.e. access is de-
nied). Comparison operations (<, >, etc.) result in TRUE or FALSE as expected when value types
are comparable (e.g. 1 < 2 results in TRUE) and UNDEF when incomparable (e.g. "Pizza" >
3.1415). The following definition of the policy language is given using ABNF[Crocker and
Overell 1997] syntax (an updated version of this syntax, HGPLv2, is introduced in Chapter 5):
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Listing 3.1. Grammar of HGABAC’s HGPLv1 Policy Language in ABNF

policy = exp [ bool op policy ]

/ ( policy )

exp = var op var

/ [ "NOT" ] bool var

/ [ "NOT" ] "(" policy ")"

var = const / att name

bool var = boolean / att name

op = ">" / "<" / "=" / ">=" / "<=" / "! ="

/ "IN" / "SUBSET"

bool op = "AND" / "OR"

att name = user att name / object att name / env att name

/ admin att name / connect att name

user att name = "user." id

object att name = "object." id

env att name = "env." id

admin att name = "admin." id

connect att name = "connect." id

atomic = int / float / string / "NULL"

const = atomic / set

boolean = "TRUE" / "FALSE" / "UNDEF"

set = "{" "}" / "{" setval "}"

setval = atomic / atomic "," setval

id = +(ALPHA / DIGIT / " ")

int = ["-"] ( 1-9 ) *( DIGIT ) / "0"

float = int "." +( DIGIT )

string = DQUOTE *( %x20-21 / %x23-7E ) DQUOTE
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user att name and object att name correspond to attribute names in UA and OA respectively,
while env att name, admin att name and connect att name correspond to attribute names in
EA, AA and CA respectively. string are c-style strings limited to printable characters. Other-
wise, our policy language functions like c-style boolean statements where the only variables are
attributes. Semantics of indivudal operations (e.g. <, >, =, IN, etc.) are given in Appendix B.

Example 3.1. Example HGABAC Policies Using the HGPLv1 Policy Language

(a) user.id IN {5, 72, 4, 6, 4} OR user.id = object.owner

(b) object.required perms SUBSET user.perms AND user.age >= 18

(c) user.admin OR (user.role = "doctor" AND user.id ! = object.patient)

Example 3.1 gives three example policies. Policy string 3.1a would only return true when
processed by the authorized function, if the user attribute id is present and has at least one value
matching an element in the given set {5, 72, 4, 6, 4} or has a value that is equal to a value in
object.owner. Note that the value of the attribute user.id may be a set of multiple values, which
would still pass the policy so long as ∃e ∈ user.id : e ∈ {5, 72, 4, 6, 4} or e = object.owner.
Policy string 3.1b would limit access to a user who is at least 18 and has the set of permissions
such that the object’s required perms is a subset. Finally, policy string 3.1c demonstrates a
possible use case, where you desire to give doctors access to any medical record but their own
(as well as allow a user with the admin attribute to access any record).

3.3.2.1 HGPL Limitations

HGPL’s lightweight and easy-to-use design requires limiting the features supported by the
policy language. In contrast with languages such as XACML, which aim to be as fine-grain
and flexible as possible, HGPL has a number of limitations:

1. Negative permissions: HGPL only supports positive permissions. Each policy string may
grant one or more permissions but there is currently no support for policies that remove or
restrict permissions from a user if satisfied. This limitation prevents conflicts when policies
are combined but limits flexibility of HGPL policies.

2. Obligations: XACML supports the notion of obligations, directives that state what actions
must be carried out before or after an access control decision is made (approved or denied).
Obligations allow for mandatory logging and a means to meet more formal access control
requirements. HGPL does not currently support such directives.

3. Operations: Currently, HGPL does not support operations or functions to be run on the
values of attributes beyond the Boolean operations stated in Listing 3.1 and Appendix B.
Adding built-in mathematical, string, and more complex logical operations and functions
could allow for more complex and flexible policies. For example, an AVERAGE or SUM
function could allow for policies to be created based on an evaluation of a set of values (e.g.
SUM(user.expenses) <= 1000 or AVERAGE(env.temperatures) >= 30).
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4. Namespace: HGPLv1 does not support namespaces for attributes, permissions, users, etc.
This may cause issues when attributes may have different meanings but similar names across
organizational or system boundaries. HGPLv2 (Chapter 5 Section 5.4.1) resolves this by
adding a URI based namespace for each access control element.

5. Policy Combinations: HGPLv1 lacks any means of combining or referencing other poli-
cies. HGPLv2 (Chapter 5 Section 5.4.5) provides a partial solution in the form of policy
references. Policy references allow policies to reference other policies such that policies
can be combined using basic logical operations.

3.4 Examples and Evaluation

3.4.1 Example: The Library
This section outlines how HGABAC may be used to provide access control for a hypothetical
university library. In the following use cases it is assumed that access control is desired on four
different kinds of resources provided by the library; books, course material (textbooks, lecture
notes, etc.), periodicals, and archived records.

Case 1: Undergraduate students may check out any unrestricted book and any course
materials for a course in which they are enrolled.

Case 2: Graduate students may check out any unrestricted book or periodical but may
only check out course materials for courses in which they are a teaching assistant or
enrolled.

Case 3: Faculty may check out any book, periodical or course material as well as any
archived record from their department.

Case 4: Staff may access any resource between the hours of 8:00 and 17:00 on weekdays.

Case 5: Students enrolled in a computer science course may access periodicals from the
university network.

3.4.1.1 Group Graphs

Figure 3.3 shows the the user and object group hierarchies that would be created by an admin-
istrator for the above example and cases.

3.4.1.2 Group Membership

Users are assigned to one of the four user type groups (Undergrads, Gradstudents, Faculty
or Staff) as expected (i.e. undergraduate students are members of the “Undergrads” group,
graduate students to the “Gradstudents” group, etc.). Students are also assigned membership
in a user group for each course they are enrolled in (e.g. if a student is enrolled in CS203 they
would be a member of the user group “CS203”). Graduate students and faculty also belong to a



82 Chapter 3. HGABAC: Towards a FormalModel of Hierarchical ABAC

Min Group
{}

Undergrads
{(user_type, {undergrad})}

Staff
{(user_type, {staff})}

Gradstudents
{(user_type, {grad})}

Faculty
{(user_type, {faculty})}

CS Courses
{(enrolled_in, {cs_course})}

CS101
{(enrolled_in, {cs101})}

CS203
{(enrolled_in, {cs203})}

Min Group
{}

Books
{(object_type, {book})}

Course Material 

{(object_type, {course})}

Periodicals
{(object_type, 

{periodical})}

Archived Records
{(object_type, {archive})}

CS101
{(req_course, {cs101})}

CS203
{(req_course, {cs203})}

Restricted Books
{(restricted, {true})}

CS Records
{(depart, {compsci})}

CS Department
{(depart, {compsci})}

User Group Graph

Object Group Graph

Figure 3.3: Example user and object group hierarchies to used in the cases given in Section 3.4.1.
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department group (for the purposes of these cases, only a computer science department group,
“CS Department”, is considered1). For example, a computer science graduate student taking
the course CS203 would be a member of the “Gradstudents”,“CS203” and “CS Department”
groups and would have the effective attributes {{user type, {undergrad, grad}}, {enrolled in,
{cs course, cs203}}, {depart, {compsci}}.

Resources are assigned membership in one of the four object type groups or one of their
children as expected (i.e. books are assigned to the “Books” group or the “Restricted Books”
group, course material to one of the course object groups (e.g. “CS101”), etc.). For example a
textbook for the course CS101 would be assigned to the “CS101” object group and would have
the following effective attributes {{object type, {course}}, {req course, {cs101}}}.

3.4.1.3 Case 1

One permission pair would be sufficient for meeting the requirements of the case:

PERMS = {

{ ""undergrad" IN user.user type AND (

(object.object type = "book" AND NOT object.restricted) OR

(object.object type = "course" AND

user.enrolled in IN object.req course) )"

, check out book }

}

where check out book is the operation that allows a resource to be read/viewed.

3.4.1.4 Case 2

In this case each graduate student would be assigned an attribute “teaching” containing the set
of courses the graduate student is assigned to as a TA. The following permission pair combined
with the pair from Case 1 would be sufficient for meeting the requirements of the case:

PERMS = {

{ ""grad" IN user.user type AND (

object.object type = "periodical" OR (

oject.object type = "course" AND

object.req course IN user.teaching) )"

, check out book }

}

As the “Gradstudents” group is a child of the “Undergrads” group, graduate students are
granted access to unrestricted books and course materials for courses they are enrolled in
through the policy permission pair in Case 1 (as they have both the values “grad” and “un-
dergrad” for their user type attribute).

1In a real-world system, it would be likely that a full departmental hierarchy would be present. For example, each
department in the university would have a user group with their school or faculty as a parent user group. In the
case of a computer science department, this parent group might be the Faculty of Science. This hierarchy would
closely represent the organization hierarchy of the university.
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3.4.1.5 Case 3

As this case is less restrictive than the previous it can be met by a straightforward permission
pair:

PERMS = {

{ ""faculty" IN user.user type AND

( object.object type IN {"book", "periodical", "course"} OR

( object.object type = "archive" AND

object.depart IN user.depart ) )"

, check out book }

}

3.4.1.6 Case 4

For this case at least two environment attributes are required. “time of day hour”, that repre-
sents the current hour (1 to 24) and, “day of week”, that represents the current day of the week
(1 to 7). Then the following permission pair would be sufficient for meeting the requirements
for the case:

PERMS = {

{ ""staff" IN user.user type AND

env.time of day hour >= 8 AND env.time of day hour <= 16
AND env.day of week IN {2, 3, 4, 5, 6}"

, check out book }

}

3.4.1.7 Case 5

It is assumed that four connection attributes exist which represent the user’s IP address; “ip octet 1”
represents the first digit of the user’s IP address, “ip octet 2”, the second and so on up to
“ip octet 4”. It is also assumed that all IP addresses matching the pattern “192.168.*.*” are
internal addresses on the university’s network. The following permission pair would then be
sufficient for meeting the requirements of the case:

PERMS = {

{""cs course" IN user.enrolled in AND

connect.ip octet 1 = 192 AND

connect.ip octet 2 = 168 AND

object.object type = ‘‘periodical""

, check out book }

}
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3.4.2 Evaluation

To evaluate whether the hierarchical user and object groups of the HGABAC model provides
an advantage over more traditional non hierarchical models of ABAC in terms of simplify-
ing administration and reducing complexity, we evaluate HGABAC based on the number of
attribute and group assignments needed to fulfill the requirements of each use case given in
Section 3.4.1. These results are compared to the number of attribute assignments that would
be required in a non hierarchical model of ABAC such as ABACα [Jin et al. 2012] (if ABACα

supported environment and connection attributes required to model cases 4 and 5).

Table 3.3 outlines the results of this comparison. The worst case (each user is enrolled in
each course and each object is of an object type such that it will have the most attributes) is as-
sumed as well as a constant number of courses and departments (the same number shown in the
group graphs in Figure 3.3). In cases 1, 2 and 3 where it is required that multiple attributes be
assigned to each object and user, HGABAC has a noticeable advantage as hierarchical groups
allow multiple attributes to be assigned with a single group membership assignment. This also
has significant advantages for administration of ABAC systems, for example if an administra-
tive tasks required adding an attribute to every student in a given course, only a single additional
attribute assignment to the course’s user group would be required in HGABAC, while a new
attribute assignment for every user in the course would be required in traditional ABAC. Cases
4, and 5 take less advantage of HGABAC’s group hierarchy, instead making use of connection
and environment attributes, and as such results in HGABAC having a comparable performance
to traditional ABAC but with a slight overhead due to the object and user groups.

Table 3.3: Number of attribute and group assignments required for each case in Section 3.4.1. U is the
number of users and O is the number of objects.

Case 1 Case 2 Case 3
HGABAC ABAC HGABAC ABAC HGABAC ABAC

User Attribute 4 4U U + 5 5U 4 2U
Object Attribute 5 2O 6 2O 8 2O
User Group 3U 0 3U 0 2U 0
Object Group O 0 O 0 O 0
Total 3U+O+9 4U +2O 4U+O+11 5U +2O 2U+O+12 2U +2O

Case 4 Case 5
HGABAC ABAC HGABAC ABAC

User Attribute 1 U 1 U
Object Attribute 0 0 1 O
User Group U 0 U 0
Object Group 0 0 O 0
Total U + 1 U U + O + 2 U + O



86 Chapter 3. HGABAC: Towards a FormalModel of Hierarchical ABAC

3.5 Emulating Traditional Models

3.5.1 DAC Style Configuration

HGABAC can be configured to emulate DAC by assigning each user an “id” attribute with
a single value equal to a unique identifier for that user and assigning each object an attribute
for each access mode (e.g. “read” and “write”) that contains the set of user ids correspond-
ing to users who have access to that object for the given access mode. The set of permis-
sions are then simply: PERMS = {("user.id IN object.read", read), ("user.id IN

object.write", write)}. To model DAC style administration, an “owner” attribute maybe
added to objects that contains a single user id corresponding to the owner of the object.
The permission to grant access on administrative operations is then simply: ("user.id =

object.owner", admin operation).

3.5.2 MAC Style Configuration

HGABAC’s user groups allow configurations that emulate MAC style lattice based access con-
trol. For example given the following (Figure 3.4) MAC lattice:

TS

S1 S2 S3

C1 C2

U

TSR

S1R S2R S3R

C1R C2R

UR

UW

C1W C2W

TSW

S1W S2W S3W

min_group

TSR

S1R S2R S3R

C1R C2R

UR

min_group

UW
C1W

C2W
S1W
S2W
S3W
TSW

MAC
Security Lattice Liberal-* Group Graph Strict-* Group Graph

Figure 3.4: Example MAC lattice (left), required user group graph to repersent liberal-* property (mid-
dle) and strict-* property (right).

The user group graph may be configured as follows to enable MAC with a liberal *-property
where each user is assigned only to a single read group and a single write group. This is sim-
ilar to how RBAC is configured to emulate MAC in [Osborn et al. 2000]. Each read group
is assigned a single attribute named “read” and each write group is assigned a single attribute
named “write” both with a single value equal to its clearance level (e.g. group UR is assigned
the value {“UR”} for its “read” attribute). Each object is assigned a security level attribute
named “level”. The set of permissions are then simply: PERMS = {("object.level IN

user.read", read), ("object.level IN user.write", write)}. Users are limited
to only activating attributes inherited from groups of a single security level in any given ses-
sion. Table 3.4 shows direct(g) and effective(g) for each group.
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Table 3.4: Resulting direct(g) and effective(g) attribute sets for each group (g) in the liberal-*
User Group Graph given in Figure 3.4.

g direct(g) effective(g)

min group ∅ ∅

UR “UR” “UR”
C1R “C1R” “UR”, “C1R”
C2R “C2R” “UR”, “C2R”
S 1R “S1R” “UR”, “C1R”, “S1R”
S 2R “S2R” “UR”, “C1R”, “C2R”, “S2R”
S 3R “S3R” “UR”, “C2R”, “S3R”
TS R “TSR” “UR”, “C1R”, “C2R”, “S1R”, “S2R”, “S3R”, “TSR”
TS W “TSW” “TSW”
S 1W “S1W” “TSW”, “S1W”
S 2W “S2W” “TSW”, “S2W”
S 3W “S2W” “TSW”, “S3W”
C1W “C1W” “TSW”, “S1W”, “S2W”, “C1W”
C2W “C2W” “TSW”, “S2W”, “S3W”, “C2W”
UW “UW” “TSW”, “S1W”, “S2W”, “S3W”, “C1W”, “C2W”, “UW”

3.5.3 RBAC Style Configuration
HGABAC’s user groups can also effectively enforce hierarchical RBAC style access control by
having each user group represent a role and its assigned attributes, represent permissions. For
example given the following role hierarchy (Figure 3.5), the user group graph on the right may
be used:

MAX_ROLE

GradStudent Faculty

StaffUndergrad

MAX_ROLE

GradStudent Faculty

StaffUndergrad

min_group

Role Hierarchy Group Graph

Figure 3.5: Example role hierarchy (left) and required group graph (right) to emulate it in HGABAC.

Each group is assigned a single attribute named “perms” that contains the set of permis-
sions that group grants. Objects are tagged with an attribute for each access mode whose value
contains the set of permissions that grant permission to perform that access mode on the object.
For example, an object may have a “read” attribute with values p1 and p4 and a “write” attribute
with values p2 and p3. The set of permissions are then simply: PERMS = {("user.perms IN

object.read", read), ("user.perms IN object.write", write)} assuming the only
access modes are read and write.

If the roles in the above example role hierarchy have the following (shown in Table 3.5)
directly assigned permissions, then the groups in the user group graph will have the following
direct and effective values for the attribute “perms”:
While this enables HGABAC to emulate core and hierarchical RBAC (as defined in the NIST
RBAC standard[Ferraiolo et al. 2001]), work towards emulating the separation of duty style
constraints possible in NIST RBAC is left to future work.
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Table 3.5: Resulting direct(g) and effective(g) attribute sets for each group (g) in the Group
Graph given in Figure 3.5.

Role Direct Permissions
Undergrad P1

Staff P2

GradStudent P3, P4

Faculty P5, P6

MAX ROLE ∅

g direct(g) effective(g)

min group ∅ ∅

Undergrad P1 P1

S ta f f P2 P2

GradS tudent P3, P4 P1, P3, P4

Faculty P5, P6 P2, P5, P6

MAX ROLE ∅
P1, P2, P3, P4,
P5, P6

3.6 Conclusions & Future Work

We have introduced a new model of ABAC, entitled HGABAC, that addresses a number of the
open problems identified in Chapter 2 Section 2.4. Support for boolean rule based policies, hi-
erarchical user and object groups, and a new administrative attribute simplify administration of
ABAC systems and aiding in user comprehension of policies and attributes (an issue identified
in Chapter 2 Section 2.4.9).

We show that adding hierarchical user and object groups enables greater flexibility when
modelling real world situations in addition to providing a novel means of representing tradi-
tional access control policies (including hierarchical RBAC, DAC and MAC). Both the lack of
hierarchical structures and the need for backwards compatibility are potential road blocks for
ABAC acceptance identified in Chapter 2 Sections 2.4.2 and 2.4.3 that this work addresses.

Future work in terms of formalizing a model of ABAC should largely consist of extending
HGABAC to support features required for real world use of ABAC systems. Some potential
additions include support for separation of duty, delegation (addressed in Chapters 4 and 6),
and access control for administrative functions. Expanding the policy language defined in Sec-
tion 3.3.2 or alternatively exploring using XACML in its place could lead to greater flexibility
in supported policies. To achieve the full potential of ABAC, further automation is needed in
terms of attribute assignment and group membership. The addition of conditional user and
object group membership could also have interesting applications and implications that are
worthy of future research.

Further work is also needed towards providing supporting architectures and frameworks
to aid in the implementation and use of HGABAC based systems in the real world. Chapter 5
explores this direction and provides an architecture for sharing attributes, describes the services
needed for a distributed HGABAC based system and further extends the HGPL policy language
to include attribute name spaces.

Finally, efforts towards a formal analysis of the safety of the HGABAC model and HGPL
policy language are needed. In this direction, tools to aid policy administrators in verifying
the correctness of policies and group hierarchies will be critical for further simplifying the
administration and auditability of large ABAC systems. Such tools should provide a means
of generating group hierarchies and HGPL policies while avoiding unintended side effects or
interactions with existing policies and groups. Work towards formalisation of an HGABAC
administrative model should also consider providing means of ensuring that multiple policy
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and group administrators can operate in the same system without inadvertently altering each
others configurations.
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4.1 Introduction

Attribute-Based Access Control (ABAC) is a relatively new form of access control that bases
access control decisions on the attributes of users, objects and the environment rather than the
identity of users or the roles/clearances assigned to them. While there has been significant
interest in the creation, enforcement and application of ABAC models[Jin et al. 2012; Ser-
vos and Osborn 2014], as of 2016 there are few works that address how delegation might be
implemented or supported, leading to delegation to being identified as one of the major open
problems (Chapter 2 Section 2.4.6) in current ABAC efforts.

Delegation enables a user to temporarily and dynamically alter the design of an access con-
trol system after policies have been created to account for everyday changes that policies are
insufficient to address. In traditional models of access control delegation is relatively straight-
forward. A set of permissions or a role membership is delegated directly by a delegator to a
delegatee under set conditions (e.g. an expiry date). In ABAC, this is complicated by both the
introduction of attributes and ABAC’s identity-less nature (i.e. access decisions are made on
the basis of attributes and the user’s identity may be unknown). Attributes may seem like an
ideal access control element to build delegation around (as is done in ABE[Bethencourt et al.
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2007; Servos et al. 2013] and Attribute Certificates[Turner et al. 2010]); however, as we will
show, this naive approach comes with a number of unexpected challenges.

This chapter offers a preliminarily investigation into strategies for incorporating delegation
into ABAC with the hope that they may lead to the development of full ABAC delegation
models (such as the one presented in Chapter 6). Potential strategies are created by evaluating
the combinations of delegators, delegatable access control elements and delegatees common
in most ABAC models (Section 4.2.1). The trade-offs associated with each family of strate-
gies are discussed and multiple examples are given that demonstrate how delegation might be
performed (Section 4.2.2). Finally, we give conclusions and outline directions for future work
(Section 4.4). It is our hope that this work will aid future research by identifying possible
strategies for the creation of ABAC delegation models as well as the challenges and benefits
associated with them.

4.2 Description of Potential Delegation Strategies for ABAC

4.2.1 Delegation Components
Delegation can be thought of as relating three access control components; a delegator, a del-
egatee and a delegatable access control element. A delegator temporarily grants a delegatee
an access control element (e.g. a set of permissions or role membership) under set constraints.
In RBAC delegation models, this is relatively straightforward: the delegator and delegatee are
typically users and the access control element being delegated is either a set of permissions
(via a temporary role)[Wang and Osborn 2011] or membership in an existing role[Barka et al.
2000]. ABAC, however, presents new possibilities for delegators, delegatees and delegatable
elements that result in different trade-offs and limitations when combined. Each combination
provides a conceivable strategy for delegation and offers particular advantages/disadvantages
if used as the basis for an ABAC delegation model. This can be formulated as a Strategy Graph
(as shown in Figure 4.1) in which each possible path from a delegator to a delegatee forms a
potential strategy for incorporating delegation into ABAC.

Delegatable elements are the most important characteristic of delegation as they answer
what is being delegated, while the delegators and delegatees answer who and where (i.e. who
is doing the delegating and where the elements are being delegated to). The following are the
most suitable delegatable elements that we have identified in current ABAC models[Jin et al.
2012; Servos and Osborn 2014]:

Attributes: Perhaps the most obvious element and one that has been explored to a limited
extent (in ABE[Bethencourt et al. 2007; Servos et al. 2013] and Attribute Certificates[Turner
et al. 2010]) are user attributes. In cases where attributes are delegatable, users are allowed
to delegate their assigned attributes to a delegatee such that they are considered to be part
of the delegatee’s attribute set.

Permissions: Delegating permissions a delegator has obtained from a policy decision is an-
other option. In such cases users are granted permissions as a result of their attribute set
satisfying a policy and can delegate these permissions onto others while the policy remains
satisfied.
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Figure 4.1: Strategy Graph

Group Membership: Recent ABAC models have incorporated the concept of user groups
into the core ABAC model. In HGABAC[Servos and Osborn 2014] (Chapter 3), groups can
be directly assigned user attributes that are inherited by users through their membership.
Membership in these groups provides a possible delegatable element, similar to how role
membership is delegatable in some RBAC delegation models[Barka et al. 2000].

While traditional models focus on delegation between users, additional possibilities exist
for ABAC. In ABAC models with group support, user groups can be delegators in the sense that
attributes or other delegatable elements assigned to groups may be temporarily delegated to a
delegatee. In such a case, while the group is the source of the delegatable elements, the actual
instigator of the delegation would be the members of the group or another actor in the system
(e.g. a group leader). Similarly, the delegatee need not be limited to a user. Delegating to a
group allows a delegator to assign their delegatable elements to multiple users in one operation.
This is useful in scenarios where multiple users are briefly required to take on the duties of a
single delegator (e.g. an absent store manager delegating his permissions to all department
managers). In cases where group membership is being delegated, it can be considered that all
members in the delegatee group are also temporarily made members of the delegated group.

Delegations can also be made to a policy or attribute. When an attribute is acting as
a delegatee, all users that are directly (not through delegation) assigned the same attribute
also become delegatees. For example if a permission, P, is delegated to the attribute (ROLE,
{manager}) (an attribute named ROLE with the value “manager”) all users that are assigned the
attribute ROLE with a value of “manager” will be delegated the permission P. Using a policy as
a delegatee works similarly. A delegator delegates some element to a policy they create and all
users satisfying this policy are delegated the element. For example, if membership in a group,
G, is delegated to the policy ROLE = manager AND YEARS EMPLOYED ≥ 3, users that have
attributes stating that they are managers and employed for at least 3 years will be delegated
membership in group G. While delegating to an attribute or policy may seem complex, it is a
necessity to support delegation in a system where the identity of a user may remain unknown
and access decisions are made purely on the user’s attributes.
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Table 4.1: Delegation Strategies

Strategy Name Delegator Delegatable
Element Delegatee

Attribute Delegation
User-to-User Attribute Delegation U AS U
User-to-Group Attribute Delegation U AS G
Group-to-Group Attribute Delegation G AS G
Group-to-User Attribute Delegation G AS U
User-to-Attribute Attribute Delegation U AS A
Group-to-Attribute Attribute Delegation G AS A
User-to-Policy Attribute Delegation U AS P
Group-to-Policy Attribute Delegation G AS P
Group Membership Delegation
User-to-User Membership Delegation U GM U
Group-to-User Membership Delegation G GM U
Group-to-Group Membership Delegation G GM G
User-to-Group Membership Delegation U GM G
User-to-Attribute Membership Delegation U GM A
Group-to-Attribute Membership Delegation G GM A
User-to-Policy Membership Delegation U GM P
Group-to-Policy Membership Delegation G GM P
Permission Delegation
User-to-User Permission Delegation U PS U
User-to-Group Permission Delegation U PS G
Group-to-User Permission Delegation G PS U
Group-to-Group Permission Delegation G PS G
User-to-Attribute Permission Delegation U PS A
Group-to-Attribute Permission Delegation U PS A
User-to-Policy Permission Delegation U PS P
Group-to-Policy Permission Delegation G PS P

Legend
U = User PS = Policy Set
G = Group AS = Attribute Set
P = Policy GM = Group Membership
A = Attribute
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Alice Bob

Dave Charlie

direct(Alice) = 

  {(year, {4}),

   (role, { undergrad }),

   (department, { CompSci })}

                 

direct(Bob) = 

  {(role, { faculty }),

   (department, { SoftEng })}

                 

{(department, 

{ CompSci })}

                 

{(role, { faculty })}

                 
{(year, {4}),

 (role, { undergrad })}

                 

direct(Dave) = 

  {(role, { ProspectiveStudent })}

effective(Dave) =

  {(role, { ProspectiveStudent , 

            undergrad )},

   (year, {4})}

                 

direct(Charlie) = 

  {(role, { grad }),

   (department, { SoftEng })}

effective(Charlie) =

  {(role, { grad ,  faculty }),

   (department, { SoftEng ,  CompSci })}

                 

Figure 4.2: Example of User-to-User Attribute Delegation. Arrows denote direction of delegation
(arrow points to delegatee), boxes represent users of the system.

4.2.2 Delegation Strategies
Figure 4.1 shows how each delegation component described in Section 4.2.1 may be combined
to create a delegation strategy for ABAC. Each path from a possible delegator component to a
possible delegatee component in the graph represents a feasible strategy. For example the path
(Users, Permissions, Users) represents a strategy in which users can delegate their permissions
to other users, whereas (Groups, Attributes, Policies) represents a strategy in which groups can
delegate their attributes to other users if they satisfy a given policy. Table 4.1 categorizes each
strategy into families based on the element being delegated. Strategies in the same family tend
to share common characteristics and challenges for systems adopting them. In this section,
we discuss the advantages and limitations of each family. It is assumed that only one strategy
is used at a time. A delegation model for ABAC will need to utilize one or more of these
strategies in addition to traditional delegation concepts (constraints, revocation, etc.).

4.2.2.1 Attribute Delegation

In Attribute Delegation strategies, delegatees are delegated a subset of the delegator’s attributes.
Delegated attributes are merged with the delegatee’s directly assigned attributes (i.e. assigned
through any means but delegation) and the combined attribute set is treated as the delegatee’s
set during policy evaluation. An example of User-to-User Attribute Delegation is shown in
Figure 4.2 where direct(user) is the user’s directly assigned attributes and effective(user) is
the user’s effective attributes (i.e. the merged attribute set used for policy evaluations). In
Figure 4.2, Alice wants to delegate a subset of her attributes to a prospective student (Dave)
so he can satisfy the policy role = "undergrad" AND year ≥ 2 to view some resource.
As Dave only has the value “ProspectiveStudent” for his role attribute and no year attribute,
Alice must delegate both her role and year attributes for Dave to satisfy the policy. The subset
Alice delegates is {(year, {4}), (role, {“undergrad”})} which makes Dave’s effective attribute
set {(role, {“ProspectiveStudent”, “undergrad”)}, (year, {4})}.

Multiple simultaneous delegations to a single user are also possible. In Figure 4.2, Alice
wishes to delegate to Charlie so he can satisfy the policy role IN { "undergrad", "grad"}
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Oscar Mallory

direct(Oscar) = 

  {(year, {4}),

   (department, { CompSci })}

                 

direct(Mallory) = 

  {(year, {1}),

   (department, { SoftEng })}

effective(Mallory) =

  {(year, {1, 4}),

   (department, { SoftEng })}

                 

{(year, {4})}

Figure 4.3: Example of a possible attack on User-to-User Attribute Delegation.

AND department = "CompSci", and access a resource limited to CompSci students. At the
same time, Bob wishes to delegate to Charlie so he can satisfy the policy role = "faculty"

AND department = "SoftEng" and access a resource limited to SoftEng faculty. Alice del-
egates {(department, {“CompSci”})} and Bob {(role, {“faculty”})}. Making Charlie’s effective
attributes {(role, {“grad”, “faculty”}), (department, {“SoftEng”, “CompSci”})}.

While this style of delegation is easy to implement (a subject’s effective attribute set is
simply used in place of their direct set), it can lead to serious problems if not carefully con-
strained. The first issue is the creation of conflicting policy evaluations. In Figure 4.2 Al-
ice’s delegation results in Dave’s effective attribute set containing two values for the role
attribute, “ProspectiveStudent” and “undergrad”. If a policy were to exist such as role ,
"ProspectiveStudent" two different results would be possible depending on the value of
role used when evaluating the policy. A potential solution is to use a policy language that
specifies clear resolutions to conflicts (e.g. prioritize attributes assigned via delegation over
those directly assigned or always grant access when any combination of attributes satisfies the
policy). However, the issue is further complicated when multiple delegations to the same del-
egatee are considered simultaneously. In such cases, conflicts can arise from purely delegated
attributes, making conflict handling more difficult (e.g. can not simply prioritize delegated at-
tributes).

A second issue is the potential for users to collude to satisfy a policy that they would
individually be unable to. In Figure 4.3 Oscar and Mallory are trying to satisfy the policy
year > 2 AND department = "SoftEng". Individually, neither can satisfy the policy as
Oscar lacks a department attribute with a “SoftEng” value and Mallory lacks a year attribute
with a value greater than 2. However, if Oscar delegates {“year”, {4}} to Mallory it creates the
effective attribute set {(year, {1, 4}), (department, {“SoftEng”})} and Mallory can satisfy the
policy if year is evaluated as 4. While one solution is to heavily constrain what attributes can
be delegated or to use a constraint specification language[Bijon et al. 2013] to enforce SoD
style constraints, the simplest fix is to isolate delegated attribute sets from each other and the
delegatee’s directly assigned set. Thus, a user must choose what set of attributes to activate
at the start of a session (similar to role activation in RBAC[Ferraiolo et al. 2001]). Isolation
of attribute sets would also provide a solution to conflicting policy evaluations and aid in user
comprehension. For example, Alice would know that if she delegates all of her attributes to
Dave, at most Dave would have access to the same permissions as he did before in addition to
the permissions Alice has access to. Users would still be able to bypass negative polices like
“year , 4 AND year , 1” if not having a year attribute is considered to satisfy the policy by
delegating a subset of their attributes that omits the year attribute.

A third issue resulting from merging attribute sets is losing the descriptiveness of the del-
egatee’s attributes. In Figure 4.2, after delegation, Dave’s effective attribute set is no longer
descriptive of Dave. Dave obtains a year attribute with a value of 4 while not being a student.
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CS
Faculty

SoftEng
Undergr

ads

Alice Bob Dave

{(role, { faculty }),

 (department, { CompSci })}

                 

{(role, { undergrad }),

 (department, { SoftEng })}

                 

direct(Alice) = {}

inherited(Alice) =

{(role, { faculty }),

 (department, { CompSci })}

effective(Alice) = 

{(role, { faculty }),

 (department, { CompSci })}

                 

direct(Bob) = {(year, {4})}

inherited(Bob) =

{(role, { faculty ,  undergrad }),

 (department, { CompSci ,  SoftEng })}

effective(Bob) =

{(yaer, {4}),

 (role, { faculty ,  undergrad }),

 (department, { CompSci ,  SoftEng })}

                 

direct(Dave) = {(year, {2})}

inherited(Dave) =

{(role, { undergrad }),

 (department, { SoftEng })}

effective(Dave) =

{(year, {2}),

 (role, { undergrad }),

 (department, { SoftEng })}

                 

Figure 4.4: Example of attribute user groups from HGABAC[Servos and Osborn 2014]. User groups
are shown as circles and users as rectangles. Arrows denote a user being a member of a group.

While this makes delegation possible and allows Dave to satisfy the policy, it complicates pol-
icy creation (need to account for unexpected attribute combinations) and restricts the use of
attributes to the purpose of access control (e.g. a system could not trust that an e-mail sent to
an address in a user’s effective attribute set was actually theirs).

The last issue is comprehension of what is being delegated and what needs to be delegated
to achieve a desired result. A delegator must be familiar with the policies of the system and their
own attributes. In Figure 4.2, if Alice wanted to delegate a permission she was granted from
satisfying the policy role = "undergrad" AND year ≥ 2 she would have to understand
the policy, what attribute set she has been assigned and what attribute subset to delegate. This
is further complicated if delegated attribute sets are not isolated, as Alice would also have to
be aware of possible conflicts and unexpected attribute combinations.

4.2.2.2 Group Membership Delegation

Group Membership Delegation requires an ABAC model which supports user groups in which
members of a group inherit attributes assigned to that group. Figure 4.4 shows an example of
how user groups work in HGABAC[Servos and Osborn 2014]. In this case Alice and Bob are
members of the CS Faculty group and inherit the attributes role and department with values
“faculty” and “CompSci” respectively. Additionally, Bob is a member of the SoftEng Under-
grad group and inherits the values “undergrad” and “SoftEng” for the attributes role and depart-
ment. These inherited attributes are merged with the user’s directly assigned attributes to form
the user’s effective attribute set (similar to how attributes are merged in Attribute Delegation).
In Group Membership Delegation, membership in groups are delegated as opposed to the dele-
gator’s attributes. In Figure 4.4, if Alice wanted to delegate a permission she was granted from
belonging to the CS Faculty group (e.g. from satisfying the policy role = "faculty" AND

department = "CompSci") to Dave she would delegate her membership in the CS Faculty
group such that Dave’s inherited set of attributes would be {(role, {“undergrad”, “faculty”}),
(department, {“SoftEng”, “CompSci”})} leading to the effective attribute set {(year, {2}), (role,
{“faculty”, “undergrad”}), (department, {“CompSci”, “SoftEng”})} when merged with his
attributes.
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This method of delegation has several advantages over Attribute Delegation. User com-
prehension is improved as users are not required to pick individual attributes to delegate and
instead only need to consider what group memberships are needed. Placing constraints on del-
egation becomes easier as delegators are forced to delegate whole attribute sets belonging to
groups at a time (constraints can be placed on what group memberships can be delegated and
by whom, rather than individual attributes). Finally, the effective attribute set of delegatees is
more likely to remain descriptive of the delegatee as personal attributes (like year, age, etc.)
are more likely to be directly assigned than assigned to groups.

Despite these advantages, Group Membership strategies share a number of issues in com-
mon with Attribute Delegation. Conflicting policy evaluations and user collusion is still pos-
sible, although more restrained. For collusion to be possible, groups have to be assigned
the required attribute value pairs. For example, if the policy was role = "faculty" AND

department = "SoftEng", Alice and Dave could still collude to satisfy the policy (by Al-
ice delegating her membership in the CS Faculty group to Dave); however, it would not be
possible for Alice and Dave to collude to satisfy the policy year > 1 AND department =

"CompSci" as year is a directly assigned attribute. Isolating attribute sets obtained through
membership delegation and attribute sets obtained through normal assignment would mini-
mize the issue and avoid unforeseen permissions being granted (e.g. if Alice delegates her
membership a group to Dave, she knows that Dave would not satisfy any policy that she her
self could not satisfy from her membership).

Group Membership Delegation also introduces a new issue. Attributes that are directly as-
signed to a delegator, like the year attribute in Figure 4.4, are undelegatable. Assuming this
attribute is only directly assigned to users and never to groups, it would be impossible to dele-
gate membership to satisfy a policy such as year ≥ 2. A system utilizing Group Membership
Delegation would either have to carefully design its groups such that all desired delegation
use cases can be accomplished through delegating group memberships or implement a second
delegation strategy in addition to Group Membership Delegation.

4.2.2.3 Permission Delegation

Rather than delegating attributes (directly or indirectly) Permission Delegation strategies are
based on delegating permissions. Delegators are able to delegate permissions they obtain by
satisfying policies onto delegatees so long as the granting policy remains satisfied (e.g. if the
delegator’s attributes or an environmental attribute changes such that the policy granting the
permission is no longer satisfied, the delegated permission is revoked). In strategies where a
group is the delegator, the permissions the group can delegate is equal to the set of permissions
a user would be granted if they had the same attributes as the group. For example, if the
users and groups from Figure 4.4 and the policy role = "faculty" AND department =

"CompSci" existed that granted the permission, p1, both Alice and Bob as well as the group
CS Faculty could delegate p1. If the policy year ≥ 2 AND TIME > 9:00AM AND TIME <
5:00PM granted the permission p2, Bob and Dave could delegate p2 but the delegation would
only be valid between 9:00AM and 5:00PM.

Permission Delegation strategies poses greater challenges in terms of implementation but
resolve the issues faced by the other families. As delegated permissions are only valid while the
policy granting them remains satisfied, a system would be required to either periodically check
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that the delegator still satisfies the policy or recheck the policy each time the delegatee uses the
permission. Depending on the size of the system and the complexity of the policies, this could
add significant overhead. The benefit is that no change is made to the delegatee’s attribute
set, limiting conflicting policy evaluations and preventing user collusion. User comprehension
is also improved as users are delegated permissions directly rather than attributes that only
indirectly grant permissions.

4.2.2.4 XACML & Policy Rights Delegation

The XACML Administration and Delegation Profile[Rissanen et al. 2009] enables the support
of attribute-based administration and delegation policies in XACML. This is accomplished
by adding permissions that grant the right to issue new policies under certain constraints and
delegatees are able to further delegate these rights on to other delegatees so long as the same
constraints are maintained. For example, a system using this style of delegation might have a
trusted policy (e.g. one created by a system administrator) that grants Alice the right to create
a policy that grants access to use a printer so long as the subject using the printer has a role
attribute with the value “employee”. This policy would not grant Alice (or any one else) the
right to use the printer (even if she had the required attribute value pair), but only to create a
policy under these constraints. If Alice wished to allow Bob access to the printer she could
create an access policy that stated that a user with the name Bob could use the printer so
long as he had a role attribute with the value “employee”. She could also create a policy that
allowed anyone with a year attribute with a value greater then 2 and a role attribute with the
value “employee” to use the printer, to allow any user that meets these conditions to use the
printer. However, Alice could not create a policy that lacks the requirement that the user be an
employee as this is a constraint in the original delegation policy.

While this style of delegation is well suited for administration purposes, it presents some
significant user comprehension barriers. Users wishing to temporarily delegate a permission to
another user must have adequate understanding of policy creation, the policy under which they
are permitted to delegate, and the attributes that exist in the system. Allowing users to create
policies also poses potential risks if not properly constrained. As mentioned in [Rissanen et al.
2009], it may be possible for a user to create policies such that a significant amount of com-
putation will be required during policy evaluation to the point of degrading the performance of
the system (effectively executing a denial of service attack).

4.2.3 Revocation
Revocation is an integral component of delegation models that provides a means to undo or
revoke the dynamic delegations that have been made during the execution of the system.
In traditional access control models, revocation is commonly described by two properties
cascading/non-cascading and grant dependent/grant independent. Cascading revocation ap-
plies to delegation models that support multiple levels of delegation. For example, Alice might
delegate permissions p1 and p2 to Bob, who further delegates p2 onto Dave who in turn del-
egates p2 to Charlie. In cascading revocation, if Alice revoked her delegation of p1 and p2 to
Bob, the whole chain of delegation is broken and Dave and Charlie would lose access to p2.
In non-cascading revocation only Bob would lose access to the delegated permissions, while
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Alice Bob Dave

{(year, {4}),

 (role, { grad })}

                 

{(role, { grad })}

                 

direct(Alice) = 

  {(year, {4}),

   (role, { grad }),

   (department, 

     { CompSci })}

                 

Figure 4.5: Example User-to-User Attribute Delegation chain.

Charlie and Dave would maintain access to p2. Grant dependence describes who may revoke
a delegated permission. In grant dependent revocation, only the delegator who invoked the
original delegation can revoke it. In grant independent revocation any delegator that is able to
make the same delegation may revoke it. For example, if Alice delegated p1 and p2 to Bob,
and Dave is also able to delegate p1 and p2 to Bob (but has not in this case), both Alice and
Dave can revoke Alice’s delegation of p1 and p2 to Bob. In addition to user enacted revocation,
revocation can also happen as the result of some constraint being violated (e.g. a time limit
placed on the delegation expires or a user is no longer a member of a required group or role).

In attribute-based systems, revocation is further complicated as several ABAC frameworks
and architectures[Yuan and Tong 2005; Hu et al. 2013] isolate the attribute granting and policy
evaluation parts of the system. For example in the ABAC security architecture described by
Yuan and Tong[Yuan and Tong 2005], attribute authorities issue attributes to users in the form
of SAML Attribute Assertions[Ragouzis et al. 2008] that are passed on to services the user
desires to make requests upon (the services then in turn use the policy decision service to
determine if the request is granted). These attribute assertions are cryptographically signed
documents that detail a user’s attribute set and the conditions under which they are valid. This
is problematic for revocation, however, as these assertions are immutable after they have been
issued and there may be no way to directly communicate changes that would initiate revocation
between the attribute authorities and the policy decision service. Figure 4.5 shows a case where
this can be an issue. In this example of User-to-User Attribute Delegation, Alice delegates the
attribute subset {(year, {4}), (role, {“grad”})} to Bob and Bob further delegates a subset of
these attributes, {(role, {“grad”})}, onto Dave. If Dave requests his attributes from an attribute
authority he will be issued an assertion for the attribute set {(role, {“grad”})} that is valid for
some time period. However, if Alice or Bob wished to revoke their delegation before this time
period had elapsed they would have no way of easily doing so.

While solutions such as revocation lists and sending notices between the attribute author-
ities and the policy decision service are possible, they require some level of direct communi-
cation which undermines many of the benefits of this kind of ABAC security architecture. An
alternative such as having the policy decision service directly contact the attribute authority
for the user’s attribute set rather than using a SAML assertion indirectly passed through the
user would work but would eliminate benefits such as single sign-on, interoperability between
isolated attribute authorities and policy decision services run by different organizations, ability
to use an off-line attribute authority and in some cases scalability would be limited by requiring
direct communication. For these reasons, the underlying ABAC security architecture used will
have a great impact on what methods of revocation are possible or practical for each delegation
strategy.
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Table 4.2: Evaluation of Delegation Strategies

Strategy Requires Features User
Comprehension

Attributes Remain
Descriptive

Conflicting
Policy

Evalua-
tions

Persistent
Evalua-

tion
Required

Attribute Delegation
User-to-User Core ABAC Low No Yes No
User-to-Group Core ABAC Low No Yes No
Group-to-Group Core ABAC, User Groups Low Depends on Group Yes No
Group-to-User Core ABAC, User Groups Low Depends on Group Yes No
User-to-Attribute Core ABAC Low No Yes No
Group-to-Attribute Core ABAC, User Groups Low Depends on Group Yes No
User-to-Policy Core ABAC Very Low No Yes Yes
Group-to-Policy Core ABAC, User Groups Very Low Depends on Group Yes Yes
Group Membership Delegation
User-to-User Core ABAC, User Groups Medium Depends on Group Yes No
Group-to-User Core ABAC, User Groups Medium Depends on Group Yes No
Group-to-Group Core ABAC, User Groups Medium Depends on Group Yes No
User-to-Group Core ABAC, User Groups Medium Depends on Group Yes No
User-to-Attribute Core ABAC, User Groups Medium Depends on Group Yes No
Group-to-Attribute Core ABAC, User Groups Medium Depends on Group Yes No
User-to-Policy Core ABAC, User Groups Low to Medium Depends on Group Yes Yes
Group-to-Policy Core ABAC, User Groups Low to Medium Depends on Group Yes Yes
Permission Delegation
User-to-User Core ABAC High Yes No Yes
User-to-Group Core ABAC High Yes No Yes
Group-to-User Core ABAC, User Groups High Yes No Yes
Group-to-Group Core ABAC, User Groups High Yes No Yes
User-to-Attribute Core ABAC High Yes No Yes
Group-to-Attribute Core ABAC, User Groups High Yes No Yes
User-to-Policy Core ABAC Medium to High Yes No Yes
Group-to-Policy Core ABAC, User Groups Medium to High Yes No Yes
XACML/Policy Rights Delegation
XACML Profile Core ABAC, XACML Low to Medium Yes No Yes

Strategy Possible Revokers Revocation Complexity Implementation
Complexity

Attribute Delegation
User-to-User Delegator Low Very Low
User-to-Group Delegator Low Low
Group-to-Group Delegator, Group Member Low Low
Group-to-User Delegator, Group Member Low Low
User-to-Attribute Delegator Medium Medium
Group-to-Attribute Delegator, Group Member Medium Medium
User-to-Policy Delegator, Policy Medium to High Medium
Group-to-Policy Delegator, Group Member, Policy Medium to High Medium
Group Membership Delegation
User-to-User Delegator Low Very Low
Group-to-User Delegator, Group Member Low Low
Group-to-Group Delegator, Group Member Low Low
User-to-Group Delegator Low Low
User-to-Attribute Delegator Medium Medium
Group-to-Attribute Delegator, Group Member Medium Medium
User-to-Policy Delegator, Policy Medium to High Medium
Group-to-Policy Delegator, Group Member, Policy Medium to High Medium
Permission Delegation
User-to-User Delegator, Policy Medium to High Medium
User-to-Group Delegator, Policy Medium to High Medium to High
Group-to-User Delegator, Group Member, Policy Medium to High Medium to High
Group-to-Group Delegator, Group Member, Policy Medium to High Medium to High
User-to-Attribute Delegator, Policy High High
Group-to-Attribute Delegator, Group Member, Policy High High
User-to-Policy Delegator, Policy Very High High
Group-to-Policy Delegator, Group Member, Policy Very High High
XACML/Policy Rights Delegation
XACML Profile Unclear? Unclear? Likely High High
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4.3 Qualitative Evaluation of Delegation Strategies
To further explore the advantages and limitations of each delegation strategy and summarize the
issues discussed in Section 4.2, we have devised a number of qualitative attributes to evaluate
the trade-offs associated with each strategy:

Required Features: The features (namely user group support) required by the underlying
ABAC model to support this type of delegation.

User Comprehension: How accessible the concept of delegation is to users of the system.
Will the users be able to easily understand the implications of their delegation and what
rights are gained from it.

Attributes Remain Descriptive of Subject: How descriptive a subject’s attributes remain of
the subject after delegation occurs.

Potential for Conflicting Policy Evaluations: If the delegation could cause a conflict in the
evaluation of an access control policy present in the system.

Persistent Evaluation of Policies Required: If one or more policies need to be continuously
or periodically evaluated to maintain the delegation.

Revocation Complexity: The complexity of revoking a delegated permission, attribute, etc.
before it expires.

Possible Revokers: The set of actors in the system that are able to revoke a delegated permis-
sion, attribute, etc. before the expiry date (assuming a grant dependent model of revocation).

Implementation Complexity: The difficulty or complexity of integrating this delegation strat-
egy into an existing ABAC system or model.

Table 4.2 compares each strategy based on the above qualitative attributes. The ideal strat-
egy largely depends on the needs and requirements of the implementing system; however, a
few generalizations can be made. Permission Delegation strategies are suitable for systems
requiring high user comprehension or wishing to remove the possibility of conflicting policy
evaluations and removing the possibility of user collusion. Attribute Delegation strategies are
appropriate when it is not possible to continually evaluate policies as is required in Permis-
sion Delegation or low implementation complexity is desired. Group Membership Delegation
strategies provide higher user comprehension with similar results to Attribute Delegation but
require user group support (lacking in many ABAC models). Finally, Policy Rights Delegation
may provide an ideal solution to policy administration but its use for dynamic delegation may
cause issues with user comprehension and open denial of service type vulnerabilities if policy
creation is not strictly constrained.

From this summary, it can also been seen that X-to-Policy style strategies introduce higher
revocation complexity and lower user comprehension. However, these strategies also provide
greater flexibility and allow for delegation to users whose identity may not be known at the
time of delegation or policy creation. X-to-Group strategies provide a means for delegators to
delegate to groups of users in one operation but are dependent on user group support in the un-
derlying ABAC model. X-to-Attribute strategies provide a middle ground between X-to-User
and X-to-Policy strategies with less flexibility than the X-to-Policy strategies but increased user
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comprehension and retaining the ability to delegate to users that are not known at the time of
delegation.

4.4 Conclusions & Future Work

4.4.1 Delegation Strategies

The delegation strategies described in this chapter seek to start addressing the open problem
of delegation (Chapter 2 Section 2.4.6) by providing a number of directions for future ABAC
based delegation models to explore. Each strategy discussed is a potential basis for creating a
delegation model and come with their own advantages and disadvantages.

The ideal delegation strategy depends on the needs of the implementing system; however,
a few generalizations can be made. Permission Delegation is suitable for systems requiring
high user comprehension and removes the possibility of conflicting policy evaluations and user
collusion. Attribute Delegation is ideal when continual policy evaluation would be difficult or
low implementation complexity is desired. Group Membership Delegation provides high user
comprehension with similar results to Attribute Delegation but requires group support.

Delegating to a user (X-to-User strategies) provides the closest parallel to delegation in
traditional models, however, delegating to groups (X-to-Group), attributes (X-to-Attribute) or
policies (X-to-Policy) can provide greater flexibility and allow for delegation to users whose
identity is unknown during policy creation. X-to-Group allows for delegation to groups of
users in one operation but requires group support. X-to-Policy introduces higher revocation
complexity and lower user comprehension but has the greatest flexibility. X-to-Attribute pro-
vides a middle ground between the two with less flexibility than X-to-Policy but increases user
comprehension while retaining the identity-less nature of ABAC.

4.4.2 Future Work

A number of directions are possible for future work. Using multiple strategies simultaneously
could provide new possibilities for delegation. Such combinations could help overcome the
limitations of individual strategies but further work is needed to evaluate any complexities
or conflicts introduced. Existing policy conflict resolution techniques could help mitigate the
issues faced by Attribute and Group Membership Delegation, as well as allow for hybrid strate-
gies with minimal limitations. Additional work is required to determine if current techniques
are applicable.

Formalizing the strategies described in this work will allow for in-depth analysis and aid
integration into existing ABAC models. Extending an existing model with each strategy would
allow for a more quantitative evaluation and provide a reference model for future work. HGABAC
is an ideal candidate for such extensions by virtue of its support for user groups. This direction
is explored in Chapter 6 by formalizing the User-to-User Attribute Delegation strategy as a new
delegation model for HGABAC and a set of extensions to the HGAA architecture (described in
Chapter 5), including an updated attribute certificate format that supports “off-line” delegation
between users without a third party.
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5.1 Introduction

Attribute-Based Access Control (ABAC) is an emerging form of access control that bases ac-
cess control decisions on the attributes of users, objects and the environment rather than the
identity of users or the roles/clearances assigned to them. While the beginnings of ABAC in
academic literature can be seen as early as 15 years ago[Wang et al. 2004], ABAC has only
recently gained significant attention in the past half decade[Servos and Osborn 2017]. This
newfound interest has resulted in the creation of numerous ABAC models[Servos and Osborn
2014; Jin et al. 2012; Ferraiolo et al. 2011; Rubio-Medrano et al. 2013], however, none to date
have gained acceptance as a unified standard or provided a complete view of how they might
be implemented in practice. Real-world implementation details and results are still needed and
existing models largely lack architectural specifications required for actual use and empirical
study.

In our pervious work[Servos and Osborn 2014] (Chapter 3), we introduced Hierarchi-
cal Group and Attribute-Based Access Control (HGABAC), a model of Attribute-Based Ac-
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cess Control that incorporates hierarchical user and object groups to ease administration and
increase policy flexibility. Since publication, extensions to and expansion of the original
HGABAC model have been explored by ourselves and others, including introduction of an
adminstative model (GURAG)[Gupta and Sandhu 2016], the creation of an authorization archi-
tecture for a restricted HGABAC model (rHGABAC)[Bhatt et al. 2017] and preliminary work
towards incorporating delegation concepts[Servos and Osborn 2016] (Chapter 4). However,
none of these works provide a complete architecture to facilitate real-world implementation
and use of HGABAC in a distributed environment or address the open issue of attribute storage
and sharing (an open problem discussed in Chapter 2 Section 2.4.7).

Questions like “who assigns the attributes?”, “how are attributes shared with each party?”,
“how does the user provide proof of attribute ownership?”, “where and how are policies eval-
uated?”, “how will the model scale in real-world use?”, etc. remain unanswered. This chapter
attempts to answer these questions and more in regards to HGABAC through the creation of
an attribute-based architecture, entitled Hierarchical Group Attribute Architecture (HGAA).
HGAA enables the use of HGABAC in distributed environments by formalizing and providing
the following key components:

• Attribute Authority: A service for managing, storing and providing user attributes in the
form of attribute certificates that are used to authenticate with a user service provider.

• Attribute Certificate: A cryptographically secured certificate that details attributes a user
has activated for a given session as well as revocation and delegation rules under which the
certificate was issued.

• HGABAC Namespace: A URI-based namespace for uniquely identifying HGABAC ele-
ments (attributes, users, objects, etc.) across disparate security domains and authorities.

• Policy Authority: A service which manages and evaluates HGABAC policies on behalf of
a user service provider.

• User Service Provider: A provider of services to end users that have access restricted on
the basis of one or more HGABAC policies.

These service components are implemented as JSON-based web services and performance
results are given to demonstrate the scalability of the architecture in terms of number of at-
tributes and policy complexity. A detailed attribute certificate format is specified that includes
support for future delegation and revocation extensions as discussed in [Servos and Osborn
2016] (Chapter 4) and utilized in Chapter 6 to create a HGABAC and HGAA based delegation
model.

The remainder of this chapter is laid out as follows; Section 5.2 briefly introduces HGABAC
and gives background information, Section 5.3 discusses related work and its applicability to
HGAA, Section 5.4 introduces the overall architecture and details each component, Section 5.5
details our HGAA implementation and gives preliminary performance results and finally Sec-
tion 5.6 presents our concluding remarks and considers directions for future work.
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Figure 5.1: HGABAC components and relations using Crow’s Foot Notation to denote cardinality of
relationships. Primitive components are shown in ovals.

5.2 HGABAC Background

HGABAC[Servos and Osborn 2014] (Chapter 3) provided a formal model of ABAC that in-
troduced group based hierarchical representations of object and user attributes that was not
available in other models at the time. In HGABAC, attributes are assigned both directly to
access control entities and indirectly assigned through user and object attribute groups (these
relations are shown in Figure 5.1). Attribute groups help simplify administration of ABAC sys-
tems by allowing administrators to create user or object groups whose membership indirectly
assigns sets of attribute/value pairs to its members. These groups are hierarchical and inherit
attribute/value pairs from their parent groups allowing for more flexible policy representation
when combined with the HGABAC policy language.

The group hierarchy is represented as a directed acyclic graph with each group a vertex
and each edge a parent/child relation between the groups such that the edge is directed to
the parent. All possible paths in the graph have the constraint that they must eventually lead
to a special min group that has no parents and no assigned attributes. Child groups inherit
the attributes of their parent groups such that the child group’s “effective” set of attributes
(i.e. the set of attributes both directly assigned to the group and inherited from other groups)
consists of the union of all parent groups’ “effective” attributes with the attributes directly as-
signed to the child. An example user group graph is shown in Figure 5.2, in which directly
assigned attributes are shown under each group name. In this example, the effective set of
attributes for the Gradstudents group would be {{employee level, {1}}, {student level, {1, 2}},
{room access, {MC8,MC10,MC355,MC342,MC325}} as the employee level attribute is in-
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Min Group
{}

Undergrads
{(student_level, 1), 

(room_access, {MC8, 

MC10})}

Staff 

{(employe_level, 1), 
(room_access, 

{MC355})}

Gradstudents
{(student_level, 2), 

(room_access, {MC342, 

MC325})}

Faculty
 

{(employe_level, 2), 
(room_access, 

{MC320})}

Figure 5.2: Example user group hierarchy represented as a graph. The large bold text denotes the
group’s name, beneath which the set of directly assigned attributes is shown.

Listing 5.1: Example HGABAC HGPLv1 Policy Permission Pairs

P1 = (user.age >= 18 AND object.title = "Adult Only Book", read)

P2 = (user.id = object.author, write)

P3 = (user.role IN {"doctor", "intern", "staff"} AND

user.id != object.patient, read)

P4 = (object.type = "program" AND object.required_certifications

SUBSET user.certifications , run)

herited from the Staff group and values of the other attributes are merged with the values from
the parent groups (Staff and Undergrads). In the case of the Faculty group, the effective set of
attributes would be {{employee level, {1, 2}}, {room access, {MC355,MC320}}, only inheriting
attributes from the Staff group.

In addition to the core HGABAC model, an attribute-based policy language (HGPLv1)
was created to support policy creation and evaluation. HGPLv1 represents policies as C style
boolean statements that may evaluate to TRUE, FALSE or UNDEFINED. A resulting evaluation
of TRUE implies that access should be granted, FALSE that it should be denied and UNDE-
FINED if the policy can not be properly evaluated at the current time (equivalent to a result of
FALSE for access control decision purposes). Policies are associated with a set of operations
that they grant if satisfied.

Listing 5.1 presents a number of example policies that are possible in HGPLv1. Policy P1
states that any user with an age of 18 or older can read the book with the title “Adult Only
Book”. Policy P2 allows a user to write to any object they are an author of. Policy P3 limits
access to read a medical record to users who have the role doctor, intern or staff but only if they
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are not listed as a patient in that record. And finally, policy P4 specifies that a user can run a
program if they have the required certifications listed in the program’s certifications attribute.

It has been shown[Servos and Osborn 2014] (Chapter 3 Section 3.5) that HGPLv1 and
HGABAC are capable of emulating MAC, DAC and hierarchical RBAC (though not separation
of duties) and that their attribute groups result in less complex (in terms of the number of
assignments and relations between access control entities) representations than standard (non-
hierarchical) ABAC models under a number of hypothetical use cases.

5.3 Related Work
A number of generic access control frameworks and architectures exist that could conceivably
be used to support HGABAC. The most notable of these are the Security Assertion Markup
Language (SAML)[Hughes and Maler 2005], the eXtensible Access Control Markup Lan-
guage (XACML)[Anderson et al. 2003] and the AAA Authorization Framework[Vollbrecht
et al. 2000]. SAML provides an XML-based standard for exchanging authentication and au-
thorization information commonly used for Single Sign-On (SSO). XACML provides a XML-
based standard for representing and sharing access control policies and an accompanying ar-
chitecture that follows the AAA Authorization Framework which describes an authorization
framework as a combination of the following distributed policy modules:

• Policy Retrieval Point (PRP): Point at which a policy is retrieved from a Policy Repository.

• Policy Decision Point (PDP): Point where a policy from a PRP is evaluated based on infor-
mation from one or more PIPs.

• Policy Enforcement Point (PEP): Point at which the policy is enforced (i.e. the point at
which a user is denied or granted access to a service based on the result of the PDP).

• Policy Information Point (PIP): Point at which information needed to evaluate a policy is
retrieved. In the case of ABAC, this is normally attributes and their values.

• Policy Administration Point (PAP): Point at which policies are administered and/or cre-
ated1.

While it may be possible to create a HGABAC architecture-based system solely on these
standards (and this is a possible direction for future work mentioned in Section 5.6), such a
solution would face a number of issues and shortcomings addressed by our HGAA architecture:

• Off-Line PIPs: In the most common use of the XACML architecture, a PDP requests the
policy information required to evaluate a policy from a PIP after it receives a request from
a PEP (presumably triggered by a user attempting to access a service). However, this ap-
proach is problematic if PIPs are unavailable (e.g. a user’s home domain may not have a PIP
for user attributes that is available continuously or may wish to only assign attributes off-
line) or such requests introduced excessive overhead (e.g. if a large number of PIPs need to

1Not defined in the AAA Authorization Framework, only in XACML
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be contacted to collect a full set of a user’s attributes). HGAA provides a solution in which
no outside PIPs need be contacted if an attribute certificate is available.

• Public Key Infrastructure (PKI) Overhead: X.509 Attribute Certificates[Farrell et al.
2010] and SAML require the use of X.509 PKI which may be unavailable or overkill in
many cases. Additionally, requiring attribute certificates to be accompanied by the holder’s
Public Key Certificate can weaken anonymity, a key feature of ABAC. HGAA overcomes
this by using a simplified public key based trust system between Policy and Attribute Au-
thorities and specifying an attribute certificate format that does not require X.509 Public
Key Certificates and allows for pseudonymity.

• Future Support for Delegation: A future goal of HGABAC is to support one or more mod-
els of delegation as described in [Servos and Osborn 2016] (Chapter 4). While XACML
does have a delegation profile[Rissanen et al. 2009], the style of delegation supported is
closer to administration than traditional user-to-user delegation. HGAA provides a num-
ber of points upon which future extensions enabling a variety of delegation and revocation
models can be built while maintaining backwards compatibility.

• HGABAC Specific vs. Generic Architecture: XACML supports a large range of flexible
access control policies that do not necessarily conform to the HGABAC model or policy
language. Use of XACML would require the creation of a new XACML HGABAC profile
and means of translating HGABAC policies into XACML. As HGAA is designed specif-
ically for HGABAC, native HGABAC policies are supported without translation to a sec-
ondary policy language and no features are restricted or compromised while ensuring that
the HGABAC model is enforced.

• Lightweight Approach: XACML and other attribute-based architectures provide flexibility
and interoperability at the cost of increasing complexity and verbosity of access control
policies (for example see the comparison of a XACML and HGABAC policy in Listings 5.2
and 5.3) as well as the supporting infrastructure. HGABAC and HGAA take a lightweight
approach, aiming to provide a simplified yet powerful policy language that requires minimal
infrastructure to support.

In addition to the generic standards mentioned, the work by S. Bhatt et al.[Bhatt et al.
2017] towards creating an authorization architecture and implementation of HGABAC utilizing
the NIST Policy Machine (PM)[Ferraiolo et al. 2014, 2011] is also of note. S. Bhatt et al.
introduce a restricted HGABAC model (rHGABAC) formalized as a single-value enumerated
policy enabling it to be implemented using a bare minimum version of the PM to take advantage
of the PM’s existing access control framework. While they were successful in implementing
the core features of HGABAC, the restricted model only allowed for simplified policies and
lacks all assignment relations from the original HGABAC model. Further, the authorization
architecture presented is limited to a single PIP that is combined with the PDP and PAP.
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Listing 5.2: XACML rule to only allow access between 9AM and 5PM.
<Rule RuleId="TimeRule" Effect="Permit">

<xacml3:Description>Allow if time between 9AM and 5PM</xacml3:Description>

<xacml3:Target/>

<Condition FunctionId="urn:oasis:names:tc:xacml:1.0:function:and">

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:time -greater-than-or-equal"

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:time -one-and-only">

<EnvironmentAttributeSelector

DataType="http://www.w3.org/2001/XMLSchema#time"

AttributeId="urn:oasis:names:tc:xacml:1.0:environment:current -time"/>

</Apply>

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#time">

09:00:00

</AttributeValue>

</Apply>

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:time -less-than-or-equal"

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:time -one-and-only">

<EnvironmentAttributeSelector

DataType="http://www.w3.org/2001/XMLSchema#time"

AttributeId="urn:oasis:names:tc:xacml:1.0:environment:current -time"/>

</Apply>

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#time">

17:00:00

</AttributeValue>

</Apply>

</Condition>

</Rule>

Listing 5.3: HGABC Policy to only allow access between 9AM and 5PM.

env.time_of_day_hour >= 9 AND env.time_of_day_hour <= 17
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5.4 Architecture
The HGAA architecture is comprised of three core service types; the Attribute Authority ser-
vice (discussed in Section 5.4.2), the Policy Authority service (discussed in Section 5.4.5) and
the services provided by the User Service Provider (referred to as “User Services” and dis-
cussed in Section 5.4.4). Using terminology from the AAA Authorization Framework, the
Attribute Authority would be analogous to a PIP, the Policy Authority to a combined PDP,
PRP and PAP and the user services to a PEP. A simplified (only showing a single instance of
each service and one user) representation of this architecture and the information flow between
the services is shown in Figure 5.3.

Many instances of Attribute Authorities, Policy Authorities and User Services are allowed
to coexist across diverse security domains. Interoperability between these services and do-
mains is possible so long as a trust relation has been established at a prior time between a given
Attribute Authority and a given Policy Authority. From a technical standpoint, this trust rela-
tion consists of a Policy Authority listing an Attribute Authority’s public key as trusted (thus
accepting attribute certificates issued by this authority). From a practical standpoint, this means
that users who are issued an attribute certificate (hereinafter referred to as an “AC” and dis-
cussed in more depth in Section 5.4.3) from one domain/organization can access the services
of another domain/organization if a trust relation exists between their Attribute and Policy Au-
thorities and the user satisfies the required policies. User Services are able to utilize HGABAC
by employing the services provided by a Policy Authority to evaluate user requests (which
include an AC issued by a trusted Attribute Authority). These relations between services and
users are shown in Figure 5.4.

The following subsections describe each major HGAA component in more depth including
the requests between services shown in Figure 5.3.

5.4.1 HGABAC Namespace
As multiple Attribute Authorities may exist and do not directly communicate, attributes from
different sources must be uniquely identifiable and conflicts avoided. This issue is not isolated
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Listing 5.4: HGABAC URI Based Namespace Grammar

Absolute URI:

hgabac://<authority >[[/<type>]/<element_name >]

Relative URI:

[/]<type>/<element_name >

| [/]<element_name >

type:

user

| group[/user | /object]

| attribute[/<att_sub_type >]

| object[/<obj_sub_type >]

| session

| operation

| permission

| policy

| service

att_sub_types:

user

| object

| environment

| admin

| connection

| unknown

obj_sub_types:

file

| service

| hardware

| program

| database

| meta

| unknown

element_name:

defined by regex: [a-zA-Z0-9\.\-\_]+

authority:

<host>[:<port>]

host:

valid hostname as per RFC 1123

port:

defined by regex: [1-9][0-9]*

must be less then 65536.
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to HGAA but an open ABAC problem that has been identified in recent literature[Servos and
Osborn 2017; Hu et al. 2013] (and discussed in Chapter 2 Section 2.4.7). We offer a partial
solution that is similar to the scheme used in XACML, in which each attribute (and all other
HGABAC elements) is given a unique URI[Berners-Lee et al. 2005] based on the grammar
given in Listing 5.4. The key difference between our namespace scheme and XACML’s is our
support for and treatment of relative URIs.

Absolute URIs such as hgabac://cs1.ca/attribute/user/age specify a HGABAC element (in
this case a user attribute) from a specific authority (in this case cs1.ca). A relative URI such
as /attribute/user/age would specify a HGABAC element from any authority (in this case an
user attribute named age from any authority). By omitting other parts of the path, relative
URIs can make broader matches. For example, /attribute/role would match any role attribute
regardless of attribute type or issuing authority. Supporting both absolute and relative URIs
in this fashion allows policies to be created that reference attributes from a distinct authority
(absolute reference) or any attribute of the same name and type (relative reference).

5.4.2 Attribute Authority
The Attribute Authority provides services to administer the user group hierarchy and user at-
tribute information in a given domain/organization and issue ACs to users within that domain.
It is comprised of two subservices and a database (as shown in Figure 5.3); the Attribute Ad-
ministration Point Service, the Attribute Store services, and the User Attribute Database. The
Attribute Administration Point Service provides administrative operations related to managing
and assigning user attributes. The User Attribute Database stores user attribute assignments
for users in the Attribute Authority’s domain. The Attribute Store Service provides two impor-
tant functions; first and most importantly it deals with certificate requests and issuing ACs and
secondly it maintains a revocation list for all ACs issued in the domain that have been revoked.

The certificate request process proceeds as follows (and is shown as steps 1, 2 and 3 in
Figure 5.3):

1. The user sends a certificate request to the Attribute Authority containing a list of user at-
tributes they wish to activate for a given session, their public key from a public/private key
pair generated solely for this session and their credentials for authenticating with the At-
tribute Authority. The method of authentication is left as an implementation detail for the
Attribute Authority and may be domain specific. As per the HGABAC specification, users
may activate a subset of their assigned and inherited user attributes to allow for principle of
least privilege and prevent identifying information being included in unneeded attributes.

2. If the user’s credentials are valid, the Attribute Authority requests the activated attributes
assigned to the user and their values from the Attribute Database and generates an AC as
described in Section 5.4.3. This AC contains the public key provided by the user in step
1, such that the user can provide proof of ownership of the AC using their corresponding
private key without providing identifying information.

3. The generated AC is issued to the user who may now use it to authenticate with User Ser-
vice Providers including those outside of the user’s home domain without providing any
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additional credentials. No further communication is required between the user and the At-
tribute Authority (or the Attribute Authority and any other component of the HGAA) for
this session after the certificate has been issued and this process may be completed off-line.

Revocation of ACs may happen in two ways. First, the Attribute Authority may embed
revocation rules within the AC that define conditions under which the certificate is valid. For
example, a common revocation rule would be to revoke a certificate after a set date/time. The
second means of revoking a certificate is through the revocation list maintained by the Attribute
Store subservice. AC serial numbers listed in the list are considered to no longer be valid
and revoked. Providing this list is optional and requires the Attribute Authority to be on-line
and accessible (at least periodically) by Policy Authorities such that revocation lists can be
synchronized.

5.4.3 Attribute Certificate
Attribute Certificates (ACs) allow users to offer proof of their attributes to User Service Providers.
This proof comes in the form of a cryptographically signed certificate issued by a trusted At-
tribute Authority accompanied by the public/private session key pair generated by the user at
the start of the session (the public key being embedded in the certificate and the user proving
they are in possession of the corresponding private key by signing request).

We loosely base the design of our AC format on X.509 Attribute Certificates[Farrell et al.
2010], due to their simple and lightweight design and use in related literature for RBAC[Chadwick
et al. 2003], but without the need for Public Key Certificates, supporting PKI or binding with
a user’s identity. The logical format of the certificate is defined using Abstract Syntax Nota-
tion One (ASN.1)[Recommendation 2015] in Listing 5.5. Our AC consists of the following 8
sections:

• ACInformation: Contains meta information about the AC. Consists of the certificate ver-
sion number (to facilitate compatibility with future versions), a globally unique serial num-
ber2 and the date and time the certificate was issued.

• ACIssuer: Identifying information about the issuer of the AC. Comprised of the public key
of the issuer (the attribute authority) including information about the public key algorithm
used, a unique identifier for the issuing authority formatted as a HGABAC Namespace URI
(e.g. hgabac://cs1.ca for the authority cs1.ca), and optionally, a common descriptive name
for the issuing authority and a URL to the authorities web service if publicly available.

• ACHolder: Pseudonymous information about the holder of the AC (i.e. the user the AC
was issued to). Contains the public key the user is using for this session including infor-
mation about the public key algorithm used, a unique identifier for the user formatted as
a HGABAC Namespace URI3 (e.g. hgabac://cs1.ca/user/u1135 for the authoirty cs1.ca and
the user u1135) and optionally a common descriptive name for the user if anonymity is not
desired.

2Only needs to be globally unique for practical purposes and can be based on probability rather than requiring
coordination between issuing authorities.

3Note that this identifier is a pseudonym for the user and should not contain real identifying information. This
identifier can be different or partially randomized for each session.
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Listing 5.5: AC Format Defined in ASN.1
AttributeCertificate ::= SEQUENCE {

information ACInformation ,

issuer ACIssuer,

holder ACHolder,

attributes SEQUENCE OF Attribute ,

revocation RevocationRules ,

delegation DelegationRules OPTIONAL ,

extensions SEQUENCE OF ACExtensions OPTIONAL ,

signature ACSignature

}

ACInformation ::= SEQUENCE {

version ACVersion ,

serial INTEGER,

issued DATE-TIME

}

ACVersion ::= INTEGER { v1(0) }

ACIssuer ::= SEQUENCE {

issuerPublicKey BIT STRING,

issuerKeyAlgorithm AlgorithmIdentifier ,

issuerUniqueIdentifier OBJECT IDENTIFIER ,

issuerName VisibleString OPTIONAL ,

issuerServiceURL UTF8String OPTIONAL

}

ACHolder ::= SEQUENCE {

holderPublicKey BIT STRING,

holderKeyAlgorithm AlgorithmIdentifier ,

holderUniqueIdentifier VisibleString ,

holderName VisibleString OPTIONAL

}

Attribute ::= SEQUENCE {

attributeID OBJECT IDENTIFIER ,

attributeType OBJECT IDENTIFIER ,

attributeValue ANY DEFINED BY attributeType OPTIONAL ,

attributeName VisibleString OPTIONAL,

...

}

RevocationRules ::= SEQUENCE {

validAfter DATE-TIME,

validBefore DATE-TIME,

revocationServiceURL UTF8String OPTIONAL,

...

}

DelegationRules ::= SEQUENCE {

...

}

ACExtension ::= SEQUENCE {

extensionID OBJECT IDENTIFIER ,

...

}

ACSignature ::= SEQUENCE {

signatureAlgorithm AlgorithmIdentifier ,

signatureValue BIT STRING

}

-- As Defined in RFC 5280

AlgorithmIdentifier ::= SEQUENCE {

algorithm OBJECT IDENTIFIER ,

parameters ANY DEFINED BY algorithm OPTIONAL

}
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• Attribute Set: The set of user attributes and their values that the user wishes to activate.
Each attribute in the set must be assigned to the user directly or inherited through group
membership as described in HGABAC. Each attribute contains a unique identifier following
the HGABAC Namespace (e.g. hgabac://cs1.ca/attribute/user/department), the attribute’s
type, value and optionally a common descriptive name for the attribute (e.g. “Department
Name”). In addition to the requested user attributes, this set also includes connection at-
tributes that contain meta information about the AC its self (such as date/time issued, is-
suer UID, holder UID, group information, etc.) such that these properties can be used in
HGABAC policies.

• ACRevocationRules: Set of rules under which an AC is valid. For the first version of the
AC presented in this work, these are limited to valid before and valid after rules. However,
space is left for extension and future work. Optionally, a URL to a revocation list web
service may be given. Such a service would provide a list of all revoked AC serial numbers
issued by the authority.

• ACDelegationRules: A place holder for delegation rules to be added in future extensions.
It is envisioned that this will allow for Attribute Delegation as described in Chapter 4 (pub-
lished in [Servos and Osborn 2016]).

• Extension Set: A place holder for miscellaneous future extensions. The only requirement
given is that extension must have a unique identifier.

• ACSignature: A cryptographic signature of all other sections of the attribute certificate
using the issuing authority’s private key (that corresponds to the public key given in the
ACIssuer section). Also included is information about the signature algorithm used. ACs
are signed by the attribute authority when issued to users as part of a certificate request and
offer proof of the authority trusting that the attributes contained describe the holder of the
certificate.

We support both a human readable text-based encoding of an attribute certificate as well as
a more efficient and less ambiguous byte encoding detailed in Figures 5.5 and 5.6. An example
of an attribute certificate in the text-based encoding is shown in Listing 5.6.
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Figure 5.5: Attribute certificate byte encoding
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Figure 5.6: Attribute certificate byte encoding (continued from Figure 5.5)
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Listing 5.6: Example AC in Text-Based Encoding. Keys, signatures and attribute list are abbreviated.
---- BEGIN ATTRIBUTE CERTIFICATE ----

FORMAT: TEXT

VERSION: 1

==== BEGIN INFORMATION ====

VERSION: 1

SERIAL: 1458702832854692305562335215823881962486460489003

ISSUED: 1513313064

==== END INFORMATION ====

==== BEGIN ISSUER ====

PUBLIC KEY: LS0tLS1CR...ZLS0tLS0=

KEY ALGORITHM: RSA[2048]

UID: hgabac://cs1.ca

NAME: CS1.CA Attribute Authority

URL: http://cs1.ca/AttributeAuthority/

==== END ISSUER ====

==== BEGIN HOLDER ====

PUBLIC KEY: LS0tLS1CRU...VZLS0tLS0=

KEY ALGORITHM: RSA[2048]

UID: hgabac://cs1.ca/user/u1135

NAME: Daniel Servos

==== END HOLDER ====

==== BEGIN ATTRIBUTE SET ====

#### BEGIN ATTRIBUTE: /attribute/user/account_balance ####

ATTRIBUTE ID: /attribute/user/account_balance

ATTRIBUTE TYPE: AttributeType.FLOAT

ATTRIBUTE VALUE: 9999.9999

ATTRIBUTE NAME: account_balance

#### END ATTRIBUTE: /attribute/user/account_balance ####

#### BEGIN ATTRIBUTE: /attribute/user/age ####

ATTRIBUTE ID: /attribute/user/age

ATTRIBUTE TYPE: AttributeType.INT

ATTRIBUTE VALUE: 31

ATTRIBUTE NAME: age

#### END ATTRIBUTE: /attribute/user/age ####

#### BEGIN ATTRIBUTE: /attribute/user/admin ####

ATTRIBUTE ID: /attribute/user/admin

ATTRIBUTE TYPE: AttributeType.BOOL

ATTRIBUTE VALUE: TRUE

ATTRIBUTE NAME: admin

#### END ATTRIBUTE: /attribute/user/admin ####

#### BEGIN ATTRIBUTE: /attribute/user/courses ####

ATTRIBUTE ID: /attribute/user/courses

ATTRIBUTE TYPE: AttributeType.SET

ATTRIBUTE VALUE: CS2211,CS2034,CS1234,CS5678,CS9000

ATTRIBUTE NAME: courses

#### END ATTRIBUTE: /attribute/user/courses ####

#### BEGIN ATTRIBUTE: /attribute/connection/ac_version ####

ATTRIBUTE ID: /attribute/connection/ac_version

ATTRIBUTE TYPE: AttributeType.INT

ATTRIBUTE VALUE: 1

ATTRIBUTE NAME: ac_version

#### END ATTRIBUTE: /attribute/connection/ac_version ####

...many attributes omitted for length reasons...

#### BEGIN ATTRIBUTE: /attribute/connection/aauth_uid ####

ATTRIBUTE ID: /attribute/connection/aauth_uid

ATTRIBUTE TYPE: AttributeType.STRING

ATTRIBUTE VALUE: hgabac://cs1.ca

ATTRIBUTE NAME: aauth_uid

#### END ATTRIBUTE: /attribute/connection/aauth_uid ####

==== END ATTRIBUTE SET ====

==== BEGIN REVOCATION RULES ====

VALID AFTER: 1513313064

VALID BEFORE: 1513316664

URL: http://cs1.ca/AttributeAuthority/revocation_list

==== END REVOCATION RULES ====

==== BEGIN SIGNATURE ====

SIGNATURE ALGORITHM: RSASSA-PKCS1-v1_5:SHA256

SIGNATURE VALUE: j6Zk7zl...e/eX1nGQ==

==== END SIGNATURE ====

---- END ATTRIBUTE CERTIFICATE ----
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5.4.4 User Service Provider
The User Service Provider provides services to end users that they wish to protect using
HGABAC and maintain the object group hierarchy and object attribute information relevant
to their services. Providers designate the policies under which their services may be accessed
but outsource the work of storing and evaluating these policies to the Policy Authority. Re-
quests upon User Services are allowed/denied based on the Policy Authority’s evaluation of
access policies and the attributes contained in the AC as well as the attributes of objects the
service will be accessing and the current value of environment, connection and administrative
attributes (as described in HGABAC).

Creation of a session between the user and User Service are handled as follows (shown as
steps 4, 5, 7 and 8 in Figure 5.3):

4. A user starts a session with a User Service by sending their AC (issued to the user by the
Attribute Authority in steps 1-3) to the User Service.

5. The User Service creates a session for the user by forwarding the user’s AC to the Policy
Authority in a Create Session request. This request contains the user’s AC and the User Ser-
vice’s unique ID as well as authentication information for the User Service, if authentication
between the Policy Authority and User Service is required (depends on implementation).

7. The Policy Authority responds with session information including a unique session ID and
expiry date/time. The User Service saves a copy of the AC and session information until
the expiry date/time. For the remainder of the session it is no longer required for the user or
User Service to transmit the AC.

8. The User service responds to the user’s session request with the session ID and expiry
date/time from the Policy Authority. A session is considered active and valid so long as the
AC is not revoked, the session expiry date/time is not past and the user has the session ID
and private key corresponding to the public key embedded in the AC. A user may terminate
a session by destroying the session ID and/or private key (destroying the private key would
terminate all sessions associated with the AC).

Once a session has been established, a user may make requests upon the User Service as follows
(shown as steps 9, 10, 12 and 13 in Figure 5.3):

9. The user makes a request on the User Service that includes the session ID received in step
8 and signs this request with their private key matching the public key in the AC.

10. The User Service validates the signature on the request (using the public key in the user’s
AC) and if valid, sends a Policy Evaluation request to the Policy Authority which includes
the session ID, the policy ID associated with the HGABAC policy that must be passed for
the request to be allowed and the set of relevant object attributes (and their values).

12. The Policy Authority responds to the Policy Evaluation request with either TRUE, FALSE,
or UNDEF based on the ternary logic used in HGABAC. A TRUE response indicates that
the policy has been satisfied and the user’s request should be allowed. A response of FALSE
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indicates that the policy has not been satisfied and the request should be denied. A UNDEF
response indicates that the policy could not be evaluated (e.g. an attribute in the policy was
not available) and the request should be denied.

13. Based on the result of the Policy Evaluation request, the User Service either fulfills the user’s
request and replies with an appropriate response or responds with a message indicating that
the request was denied (optionally with more details as to why).

Further requests may be made by the user in a like manner without the need to create a new
session so long as the session is not expired or terminated.

5.4.5 Policy Authority
Policy Authorities store, manage and evaluate HGABAC policies on behalf of User Service
Providers. Policies are expressed in the Hierarchical Group Policy Language Version 2 (HG-
PLv2), an updated version of the policy language introduced in the original HGABAC work
(from Chapter 3 and [Servos and Osborn 2014]). The grammar for the updated language is
given in Listing 5.7 in Augmented Backus–Naur Form (ABNF)[Crocker and Overell 1997].
The most notable changes are the use of HGABAC Namespace URIs in place of attribute
names and the addition of policy references. Policy references allow policies to reference
other policies such that policies can be combined using basic logical operations (AND, OR
and NOT). For example, if P1 = /user/age >= 18 OR /user/parent consent and P2 =

/object/author = /user/id then a third policy could be created that references P1 and P2,
P3 = /policy/P1 AND NOT /policy/P2 that would be equivalent to P3 = ( /object/author

= /user/id ) AND NOT ( /object/author = /user/id ). Policies are restricted from
creating recursive or circular references and references to unavailable policies result in UN-
DEF.

The Policy Authority Service is comprised of two subservices, the Policy Administration
Point Service and the Policy Decision Point Service, and two databases, the Policy Database
and the Environment & Administrative Attribute Database. The Policy Administration Point
Service allows for the creation and management of policies by User Service Providers as well
as the management of administrative attributes (as defined in HGABAC). The Policy Database
stores HGPLv2 policies available for use by User Services and the Environment & Administra-
tive Attribute Database stores the current values of environment and administrative attributes.
The Policy Decision Point Service authenticates user AC and evaluates them against stored
policies on behalf of a User Service.

Policy Authorities maintain a list of trusted Attribute Authorities along with their unique
ID and public key. AC are considered valid by a Policy Authority if they satisfy the following
requirements:

• The issuer of the AC is in the Policy Authority’s list of trusted Attribute Authorities.

• The issuer’s public key and ID match those recorded by the Policy Authority.

• The issue date of the AC is not in the future and is inside of the valid before and after range
given in the revocation rules.
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Listing 5.7: HGPLv2 Grammar in ABNF. An update to the HGPLv1 grammar.
policy = policy "OR" term / term

term = term "AND" exp / exp

exp = var op var / [ "NOT" ] bool_var

/ [ "NOT" ] "(" policy ")" / [ "NOT" ] policy_id

var = const / att_id

bool_var = boolean / att_id

op = ">" / "<" / "=" / ">=" / "<=" / "!=" / "IN"

/ "SUBSET"

atomic = int / float / string / "NULL" / boolean

const = atomic / set

boolean = "TRUE" / "FALSE" / "UNDEF"

set = "{" "}" / "{" setval "}"

setval = atomic / atomic "," setval

int = [ "-" ] +( DIGIT )

float = int "." +( DIGIT )

string = DQUOTE *( %x20-21 / %x23-5B / %x5D-7E

/ %x5C DQUOTE / %x5C %x5C ) DQUOTE

att_id = <ATTRIBUTE URI FROM HGABAC NAMESPACE >

policy_id = <POLICY URI FROM HGABAC NAMESPACE >

• All revocation rules are met including the current time/date being within the valid before
and after range.

• The serial of the AC is not listed in the Attribute Authorities revocation list (if available).

• The version of the AC and all extensions are compatible with the Policy Authority.

• The signature is valid and verifiable with the Attribute Authority’s public key.

After a session has been established and the AC authenticated (as described in Section 5.4.4),
the User Service evaluates a policy with the Policy Decision Point Service as follows (and
shown in steps 10, 11 and 12 of Figure 5.3):

10. The User Service sends a Policy Evaluation request that includes the session ID, the policy
ID, and the set of object attribute value pairs. The Policy Decision Point Service extracts
the user and connection attributes from the user’s AC (which it received when the session
was created) and checks that the session and AC remain valid and no revocation rules have
been triggered.

11. If the AC remains valid, the decision point requests the policy matching the given policy ID
from the Policy Database. If the policy references any other policy, these policies are also
requested and combined. The combined policy is analysed and needed environment and
administrative attributes are requested from the Environment & Administrative Attribute
Database.

12. The combined policy is evaluated and the result (TRUE, FALSE or UNDEF) is issued to the
User Service.
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Figure 5.7: Technology and standards used in the HGAA implementation.

5.5 Implementation & Preliminary Results

As shown in Figure 5.7, we implement each HGAA service as a Python-based JSON web ser-
vice over TLS4. Web services are created with the Ladon[Simon-Gaarde] framework. HGAA
databases are implemented using MySQL and the SQLAlchemy[SQLAlchemy] Object Re-
lational Mapper (ORM) is used to facilitate communication between services and databases.
Administrative services were not implemented at this time as our current focus is on evalu-
ating the performance and scalability of the authentication and authorization features of the
architecture.

5.5.1 Attribute Certificate

We evaluate our AC scheme in terms of size and time required to generate and sign the AC
based on the number of user attributes included in the certificate (number of connection at-
tributes remained constant at 35). The result of these comparisons are shown in Figures 5.8
and 5.9. We find that the size of the AC grows linearly with the number of user attributes
activated at a rate of approximately 36 bytes5 per attribute (for byte encoding with single value
integer attributes) and that the time to generate an AC also grows linearly with the number of
user attributes.

4Note that while TLS was used in this implementation, it is not required by HGAA or appropriate in all HGAA
applications. TLS adds overhead and requires some level of PKI (e.g. certificates would be needed for each
service), negating some advantages of the AC format. When TLS is not used, extra additions to the HGAA
protocol are needed if messages may be intercepted, altered or repeated by an attacker to prevent replay attacks
or intercepting the content of requests. Details and formalization of these additions is left to future work.

5This amount would vary based on a number of factors including the length of the attribute UID, common name,
type and number of values.
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Figure 5.10: Attribute Store Service Request and Execution Time vs. Number of User Attributes

5.5.2 Attribute Authority
The Attribute Store Service of the Attribute Authority was evaluated in terms of request and
execution time. The results of this evaluation are shown in Figure 5.10. Request time is defined
as the time it takes a client to generate a Certificate Request, send it to the Attribute Store
Service and receive a response (includes network and webserivce overhead), while execution
time is defined as the time taken from the point the Attribute Store Service receives a request
from a client to the point where the service issues a response (only includes time taken by the
service to eventuate the request and generate a response). The number of connection attributes
remained constant during testing (at 35).

We find that both the request and execution time increase linearly with the number of user
attributes activated and included in the AC. The difference in request and execution time is re-
lated to network and web service overhead that we believe can be largely reduced by optimizing
our implementation and moving to a different web service framework.

5.5.3 Policy Authority
An interpreter for the HGPLv2 policy language was implemented using python that utilizes
a recursive descent parsing strategy. The interpreter is divided into a number of modules as
shown in Figure 5.14. As an optimization step, the Abstract Syntax Tree (AST) of a given
policy is computed and stored in a binary format in the Policy Database when a policy is added
or modified. Additionally, an intermediate symbol table, listing the attributes referenced in
the policy is computed and stored alongside the AST. Using these precomputed ASTs reduces
the time required to fulfill Policy Evaluation requests from User Services and the intermediate
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symbol table allows the Policy Decision Point Service to request required attributes without
reanalysing the policy.

We evaluated the Policy Authority’s performance handling Policy Evaluation requests based
on the time required to interpret a policy, the time required to decode a precomputed AST and
the size of the precomputed AST. Results of this analysis are shown in Figures 5.11 to 5.13.
A linear relationship between the number of nodes in a policy’s AST and the time required to
evaluate the policy was found. Similarly, the time to generate or decode a policy AST also
grew linearly with the number of AST nodes as did the size of the AST binary format. AST
Nodes are used in place of number of attributes in our analysis as we have found this to be
a better measure of a policy’s complexity than the number of attributes referenced. However,
further testing is needed to evaluate the impact of requesting large number of administrative
and environment attributes from the Policy Authority’s Attribute Database or the User Service
sending a large number of object attributes.

5.6 Conclusions & Future Work

We have introduced the first complete architecture for HGABAC that supports the full model
and policy language in a distributed environment. This work aids in solving the problem of
attribute storage and sharing first indeified in Chapter 2 Section 2.4.7 by detailing the support-
ing protocols and services for sharing attributes in the context of HGABAC. Each architecture
component is detailed and the sequence of requests upon each service is described. An attribute
certificate specification and encoding is introduced for securely sharing and proving ownership
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of attributes. The HGPL policy language from Chapter 3 and [Servos and Osborn 2014] is
updated to support policy references and our HGABAC Namespace for uniquely identifying
attributes (as well as other HGABAC elements) across disparate security domains.

Details of a Python-based HGAA implementation are given and preliminary evaluation
results are discussed. Each analysis done to date, shows a linear relationship with the number
of attributes or number policy AST nodes, suggesting linear scalability. A number of possible
optimizations are mentioned, including precomputing policy ASTs and intermediate symbol
tables. Further evaluation of the architecture as a whole and under more diverse scenarios is
needed in future work as well as comparisons to solutions utilizing generic architectures and
standards (i.e. XACML, SAML, etc.) but preliminary results are promising.

Other directions for future work include extending the AC specifcation and architecture to
support the delegation strategies discussed in Chapter 4. Work towards acomplishing this task
is pursued in Chapter 6, in which HGABAC and HGAA are extened to support a user-to-user
delegation model based on one of the strategies from Chapter 4. Creating an administrative
model for HGABAC (or possibly utilizing the GURAG model presented in [Gupta and Sandhu
2016]) would allow for the creation of administrative services specified in HGAA but currently
left unimplemented.

Currently, HGAA does not specify how attributes are stored or how the HGABAC group
graph is represented in the Attribute Authority or Attribute Databases. While the described
implementation uses a traditional SQL-based relational database, other approaches may be
more advantageous for certain use cases. The Resource Description Framework (RDF)[Lassila
et al. 1998] standard may provide an ideal means of expressing these attributes as RDF is
built around subject–predicate–object statements known as semantic triples which may match
well with the user-attribute-value relations that make-up attribute assignments in HGABAC.
The use of RDF for storing and representing subject and object attributes for access control
purposes has been explored to a limited extent by Stermsek et al. who encode these attributes
in RDF metadata[Stermsek et al. 2004]. RDF and Resource Description Framework Schema
(RDFS)[Brickley et al. 1999] may also provide an ideal means of representing the HGABAC
group graph and sharing attributes (in place of or in combination with an HGAA Attribute
Certificate) in part due to their ability to describe ontologies and hierarchical connections and
incorporating them would be a beneficial direction for future work.
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Chapter 6

Incorporating Off-Line Attribute
Delegation into Hierarchical Group and
Attribute-Based Access Control

Reprint Notice

A version of this chapter was published as part of the The 12th International Symposium
on Foundations & Practice of Security (FPS’2019) as:

Daniel Servos and Michael Bauer. Incorporating off-line attribute delegation into hierarchi-
cal group and attribute-based access control. In International Symposium on Foundations and
Practice of Security, 2019. Forthcoming publication in Springer’s Lecture Notes in Computer
Science LNCS

It is also a forthcoming publication in the Springer’s Lecture Notes in Computer Science series (volume
number 12056). A preprint copy can be found at http://cs1.ca/papers/attdel.pdf

6.1 Introduction
Attribute-Based Access Control (ABAC) is an access control model in which users are granted
access rights based on the attributes of users, objects, and the environment rather than a user’s
identity or predetermined roles. The increased flexibility offered by such attribute-based poli-
cies combined with the identityless nature of ABAC have made it an ideal candidate for the
next generation of access control models. The beginnings of ABAC in academic literature
date back as early as 2004 with Wang, et al’s Logic-Based Framework for Attribute Based Ac-
cess Control[Wang et al. 2004] and even earlier in industry with the creation of the eXtensible
Access Control Markup Language (XACML)[Anderson et al. 2003] in 2003. However, it is
only in recent years that ABAC has seen significant attention[Servos and Osborn 2017]. This
renewed interest has lead to the development of dozens of ABAC models, frameworks and
implementations, but to date, few works have touched on the subject of delegation or how it
might be supported in attribute-based models.

Delegation is a key component of comprehensive access control models and has been in-
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detified as an open problem for ABAC research (as detailed in Chapter 2 Section 2.4.6). Del-
egation enables users to temporarily and dynamically delegate their access control rights to
another entity after policies have been set in place by an administrator. This ability allows
users to adapt to the realities of everyday circumstances that are not possible to foresee during
policy creation and is critical in domains such as healthcare[Rostad and Edsberg 2006]. ABAC
brings new problems and complications when incorporating delegation that are not present in
the traditional models (RBAC, DAC, MAC, etc.)[Servos and Osborn 2016] (as discussed in
Chapter 4). In the traditional models, delegation is relatively straightforward, a set of permis-
sions or role memberships (as in RBAC) is delegated directly by a delegator to a delegatee
under set conditions (e.g. an expiry date or “depth” of delegation). In ABAC, this is compli-
cated by identityless nature of ABAC (i.e. access control decisions being made on the basis
of attributes rather then the user’s identity) and the flexibility of attribute-based policies that
may include dynamic attributes such as the current time, physical location of the user, or other
attributes of the system’s environment.

In a previous work[Servos and Osborn 2016] (Chapter 4), we offered a preliminarily in-
vestigation into the possible strategies for incorporating delegation into ABAC and the benefits
and drawbacks of each method. A number of these proposed strategies have been further devel-
oped into working models by others, such as the work by Sabathein, et al.[Sabahein et al. 2018]
towards creating a model of delegation for the Hierarchical Group and Attribute-Based Access
Control (HGABAC)[Servos and Osborn 2014] (Chapter 3) model using our User-to-Attribute
Group Membership Delegation Strategy[Servos and Osborn 2016] (Chapter 4 Section 4.2.2.2).
In this chapter, we seek to explore and put forth a novel attribute-based delegation model
based on an unutilized delegation strategy, User-to-User Attribute Delegation[Servos and Os-
born 2016] (Chapter 4 Section 4.2.2.1). We offer both an extension to the HGABAC model to
provide a theoretical blueprint for incorporating delegation as well as an extension to Hierar-
chical Group Attribute Architecture (HGAA)[Servos and Osborn 2018] (Chapter 5) to provide
a practical means of implementing it. Unlike current efforts, a particular emphasis is placed
on maintaining the identityless nature of ABAC as well as the ability to delegate attributes
in an “off-line” manner (i.e. without the user having to connect to a third party to perform
delegation).

The remainder of this chapter is organized as follows; Section 6.2 introduces the potential
delegation strategies developed in our previous work and gives background on the HGAA
and HGABAC model. Section 6.3 details our model of User-to-User Attribute Delegation
and how it is incorporated into the HGABAC model. Section 6.4 provides a framework for
supporting our delegation model and details modifications to the HGAA architecture to support
it, including new extensions to the Attribute Certificate format to include delegation concepts.
Finally, Section 6.5 gives concluding remarks and directions for future work.

6.2 Background

6.2.1 The HGABAC Model

HGABAC[Servos and Osborn 2014] (Chapter 3) offered a novel model of ABAC that intro-
duced the concept of hierarchical user and object groups. Attributes are assigned both directly
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Figure 6.1: HGABAC model relations and components denoted in Crow’s Foot Notation. Primitive
components are shown in ovals.

to access control entities (e.g. users and objects) and indirectly assigned through groups. Users
then have a direct set of attributes, directly assigned by an administrator, as well as an inherited
set of attributes, indirectly assigned to them via their membership in one or more user groups.
The set of attributes used for policy evaluations is the user’s effective attribute set, that is, the
set that is the result of merging their direct and inherited attribute sets. This style of group
membership and attribute inheritance is also used to assign attributes indirectly to objects via
objects membership in object groups. These relations and the basic elements of HGABAC
are shown in Figure 6.1 and a brief description of the basic HGABAC entities, relations and
functions are as follows:

• Attributes: attributes are defined as attribute name, type pairs, that is att = (name, type),
where name is a unique name for the attribute and type is a data type (e.g. string, integer,
boolean, etc.). When assigned to entities via direct assignment (e.g. User Attribute Assign-
ment) or groups (e.g. User Group Attribute Assignment) they are associated with a set of
values being assigned for that attribute.

• User, Object and Connection Attributes: attributes are defined as attribute name, type
pairs, that is att = (name, type), where name is a unique name for the attribute and type is a
data type (e.g. string, integer, boolean, etc.). When assigned to entities via direct assignment
(e.g. User Attribute Assignment) or groups (e.g. User Group Attribute Assignment) they are
associated with a set of values being assigned for that attribute.

• Environment and Admin Attributes: defined similarly to user and object attributes, but
also have a set of values directly associated with them as they are not assigned to other
entities. Defined as att = (name, value, type) where value is a set of values conforming to
the given data type.

• Users (U): entities that may request access on system resources through sessions.

• Objects (O): resources (files, devices, etc.) for which access may be limited.
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P1: /user/age >= 18 AND /object/title = "Adult Book"

P2: /user/id = /object/author

P3: /policy/P1 OR /policy/P2

P4: /user/role IN "doctor", "intern", "staff" AND /user/id != /object/patient

P1 describes a policy requiring the user to be 18 or older and the title of the object to be “Adult Book”.
P2 requires the user to be the author of the document. P3 combines policies P1 and P2, such that the
policy is satisfied if either policy (P1 or P2) is satisfied. Finally, P4, requires a user’s role to be one of
“doctor”, “intern”, or “staff” and that they are not listed as the patient.

Figure 6.2: Example HGABAC HGPLv2[Servos and Osborn 2018] (Chapter 5 Section 5.4) policies.

• Operations (Op): operations that may be applied to an object (read, write, etc.).

• Policies (P): policy strings following the Hierarchical Group Policy Language (HGPL).

• Groups (G): a hierarchical collection of users or objects to which attributes may be as-
signed. Group members inherit all attributes assigned to the group and the groups parents
in the hierarchy. Defined as g = (name,m ⊆ M, p ⊆ G) where name is the name of the
group, m is the set of members, M is either the set of all Users or all Objects, p is the groups
parents and G is the set of all groups.

• Sessions: sessions allow users to activate a subset of their effective attributes. This subset is
used as the user attributes for policy evaluations. Sessions are represented as a tuple s in the
form s = (u ∈ U, a ⊆ effective(u ∈ U), con atts) where u is the user who owns the session,
con atts is the set of connection attributes for the session and a is the set of attributes the
user is activating.

• Permissions: a pairing of a policy string and an operation in the form perm = (p ∈ P, op ∈
Op). A user may perform an operation, op, on an object if there exists a permission that
contains a policy, p, that is satisfied by the set of attributes in the user’s session, the object
being accessed and the current state of the environment.

• direct(x): mapping of a group or user, x, to the attribute set they were assigned directly.

• inherited(x): mapping of a group or user, x, to the set of all attributes inherited from their
group memberships and the group hierarchy.

• effective(x): mapping of a group or user, x, to the attribute set resulting from merging the
entities directly assigned and inherited attribute sets.

The largest advantage of attribute groups is simplifying administration of ABAC systems,
allowing administrators to create user or object groups whose membership indirectly assigns
sets of attribute/value pairs to its members. The hierarchical nature of the groups, in which
child groups inherit all attributes from their parent groups, allow for more flexible policies,
administration and even emulation of traditional models such as RBAC, MAC and DAC when
combined with the HGPL policy language.
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Permissions in HGABAC take the form of operation/policy pairs, in which an operation
is allowed to be performed if the policy is satisfied by the requesting user’s active attribute
set, attributes of the object being affected, the current state of the environment and a number
of other attribute sources. Policies are defined in the Hierarchical Group Policy Language
(HGPL), a C style language using ternary logic to define statements that result in TRUE, FALSE
or UNDEF. Example HGPLv2 policies are given in Figure 6.2 and the full language is defined
in [Servos and Osborn 2018] (Chapter 5 Section 5.4). These policies would be combined with
an operation to form a permission. For example the permission Perm1 = (P1, read) would
allow any user who is at least 18 years of age to read the object titled “Adult Book” based on
the permission P1 from Figure 6.2. Similarly, the permission Perm2 = (P2,write) would allow
any author of an object to write to that object.

6.2.2 Hierarchical Group Attribute Architecture (HGAA)
While HGABAC provides an underlying model for ABAC, a supporting architecture is still re-
quired to provide a complete system and facilitate use in real-world distributed environments.
HGAA[Servos and Osborn 2018] (Chapter 5) provides a system architecture and implementa-
tion details for HGABAC that answer questions such as “who assigns the attributes?”, “how
are attributes shared with each party?”, “how does the user provide proof of attribute owner-
ship?”. and “where and how are policies evaluated?” that are often left unanswered by ABAC
models alone. HGAA accomplishes this by adding five key components:

• Attribute Authority (AA): A service responsible for managing, storing and providing user
attributes by issuing attribute certificates.

• Attribute Certificate (AC): A cryptographically secured certificate listing a user’s active
attributes for an HGABAC session as well as revocation information.

• HGABAC Namespace: A URI-based namespace for uniquely identifying attributes and
HGABAC elements across multiple federated domains and authorities.

• Policy Authority: A service which manages and evaluates HGABAC policies on behalf of
a user service provider.

• User Service Provider: A provider of a service to end users that has restricted access on
the basis of one or more HGABAC policies (i.e. the service on which access control is being
provided).

These components and the information flow between them are shown in Figure 6.3.
In a system following HGAA, users request Attribute Certificate (AC) from their home

domain’s Attribute Authority (AA) containing a list of their attributes for a session. Users may
then use this AC to make requests on protected user services (both in their home domain or
run by external organizations). These protected services verify the user’s AC and check that
the user has permission to access the service using their local domains Policy Authority. A key
feature of the architecture is the separation of the AA from the other services. Once users are
issued an AC, there is no longer a need for the user or other parties to contact the AA for the
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Figure 6.3: HGAA services, components and information flow. Numbers indicate order of requests.
Dotted lines denote components of a service (i.e. Attribute Store Service is a component/subservice of
the Attribute Authority Service).

duration of the session. Separating services in this way simplifies the problem of user’s using
their attribute-based credentials across independent organizational boundaries. Services run by
external organizations need not communicate with the user’s home organization to verify their
attributes beyond trusting the home organization’s public key used to sign ACs.

The framework presented in Section 6.4 extends the AC format to add delegation related
features. ACs are ideal for this purpose as room has been left for future extensions including
space for delegation extensions that were not part of the original work. Section 6.4 also presents
a modification to the HGAA protocol to add an optional delegation step in which users may
delegate part of their certificate to another user.

6.2.3 Potential Delegation Strategies
In our previous work[Servos and Osborn 2016] (Chapter 4), we explored possible strategies for
integrating delegation into ABAC and propose several potential methods primarily based on the
access control element being delegated (e.g. attributes, group memberships, permissions, etc.).
Each family of strategies results in unique proprieties and complications to overcome. The
delegation model and architecture presented in the subsequent sections (Sections 6.3 and 6.4)
of this chapter are based on the User-to-User Attribute Delegation strategy in which users
acting as a delegator, delegate a subset of their user attributes to another user acting as the
delegatee. The delegated attributes are merged with the delegatee’s directly assigned attributes
(i.e. assigned through any means but delegation) to form the delegatee’s set of user attributes
used in policy evaluations.

An example of this style of delegation is shown in Figure 6.4, in which Alice (the delegator)
delegates a subset of their directly assigned attributes to the user Charlie (the delegatee) such
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Alice Bob

Charlie

direct(Alice) = 

  {(year, {4}),

   (role, {“undergrad”}),

   (department, {“CompSci”})}

                 

direct(Bob) = 

  {(role, {“faculty”}),

   (department, {“SoftEng”})}

                 

{(department, 

{“CompSci”})}

                 

{(role, {“faculty”})}

                 

direct(Charlie) = 

  {(role, {“grad”}),

   (department, {“SoftEng”})}             

effective(Charlie) =

  {(role, {“grad”, “faculty”}),

   (department, {“SoftEng”, “CompSci”})}    

Figure 6.4: Example of User-to-User Attribute Delegation. Arrows denote direction of delegation
(arrow points to delegatee), boxes represent users of the system.

that Charlie may satisfy the policy requiring the user to be in the Computer Science department
(e.g. user.department = "CompSci"). At the same time, the user Bob (a second delegator)
also delegates a subset of their attributes to Charlie such that they may satisfy a policy requir-
ing the user to be a faculty member in the Software Engineering department (e.g. user.role
= "faculty" AND user.department = "SoftEng"). In this example, both the attributes
delegated by Alice (a department attribute with the value “CompSci”) and the attributes del-
egated by Bob (a role attribute with the value “faculty”) are combined with Charlie’s directly
assigned attributes to form their effective attribute set. Note that Bob only needed to delegate
the role attribute as Charlie already had a department attribute with the value “SoftEng”.

While this style of attribute delegation may seem straightforward, our previous investi-
gation[Servos and Osborn 2016] identified a number of potential issues regarding Attribute
Delegation:

Conflicting Policy Evaluations: Merging attribute sets can lead to multiple values for an at-
tribute. While this is an intended feature of HGABAC, it can lead to unintended conflicts
when the values are a result of delegation as opposed to careful design. For example, the
policy user.department , "SoftEng" results in two different results for Charlie in Fig-
ure 6.4 depending on the value of department used.

User Collusion: Merging attribute sets allows users to combine their attributes such that
they may satisfy policies they could not individually. In Figure 6.4, Alice and Charlie
may collude to satisfy the policy user.department = "CompSci" and user.role =

"grad", if Alice delegates her department attribute such that Charlie satisfies the policy.

Loss of Attribute Meaning: A key ABAC feature is that attributes are descriptive of their
subjects and policies are created with this in mind. Merging attribute sets leads to an effec-
tive set that is no longer descriptive of the user. In Figure 6.4, it is not clear what Charlie’s
role or department is based solely on their effective attribute set. While this makes delega-
tion possible, it increases the difficulty of policy creation as all allowable delegations and
combinations of attributes would need to be taken into account.

User Comprehension: User comprehension of policies, the attributes needed to satisfy them
and the permissions they grant is a complex and open problem in ABAC[Servos and Osborn
2017] (Chapter 2). Delegation further complicates the issue, obscuring what attributes need
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Alice Bob

Charlie

direct(Alice) = 

  {(year, {4}),

   (role, {“undergrad”}),

   (department, {“CompSci”})}

                 

direct(Bob) = 

  {(role, {“faculty”}),

   (department, {“SoftEng”})}

                 

{(department, 

{“CompSci”})}

                 

{(role, {“faculty”}),

 (department, {“SoftEng”})}

                 

direct(Charlie) = 

  {(role, {“grad”}),

   (department, {“SoftEng”})}

delegated(Charlie, Alice) = 

  {(department, {“CompSci”})}

delegated(Charlie, Bob) = 

  {(role, {“faculty”},

   (department, {“SoftEng”})}

Set 1 Set 2 Set 3

Figure 6.5: Example of Isolated Attribute Delegation. Arrows denote delegation direction and solid
boxes users. Charlie may activate one set shown in dashed boxes at a time.

to be delegated and the permission granted. When attributes sets are merged, users must
also consider possible conflicts that could lead to granting unintended permissions.

To resolve these issues, the delegation model and architecture described in this chapter takes
a modified approach to User-To-User Attribute Delegation in which the attributes delegated to a
delegatee from delegators are isolated and not merged with the delegatee’s directly assigned at-
tribute set. A delegatee may then choose to activate either their own directly assigned attributes
or their delegated attributes in a given session but never both at the same time. An example
of this approach is shown in Figure 6.5. In this example, Alice still wishes to delegate their
attributes such that Charlie may satisfy the policy user.department = "CompSci" and Bob
still wishes Charlie to satisfy the policy user.role = "faculty" AND user.department

= "SoftEng". In Alice’s case, they still only delegate their department attribute, however,
now Charlie must choose between activating the directly assigned attribute set, Set 1, or the set
delegated by Alice, Set 2. Charlie is unable to combine their own directly assigned attributes
with those delegated by Alice and must activate the delegated attributes (Set 2) to satisfy the
policy user.department = "CompSci". Note that in this case Alice was only required to
delegate a subset of their attributes to satisfy this policy.

In the case of Bob, it is now required that both Bob’s role and department attributes are
delegated to Charlie. In the previous example (Figure 6.4), Bob only needed to delegate their
role attribute as Charlie was already assigned a department attribute with the value “SoftEng”
and it was merged with the attributes delegated by Bob. With the attributes sets isolated, both
attributes are required as Charlie may not merge them with his own. The policy user.role =

"faculty" AND user.department = "SoftEng" will only be satisfied when the set dele-
gated by Bob (Set 3) is activated.

Isolation of delegated attributes avoids conflicting policy evaluations (at least those caused
by delegation) and user collusion as attributes sets are not merged. Attribute meaning is main-
tained to the extent that the active attribute set will be descriptive of either the delegatee or
delegator. Issues with user comprehension, while still an open ABAC problem[Servos and
Osborn 2017] (Chapter 2), are abated as the delegator can be ensured that regardless of the at-
tributes delegated, the delegatee will not be able to satisfy any extra policy that they themselves
are not able to. It is important to note that negative policies such as role , "undergrad" are
still problematic as a user could simply not delegate an attribute with a restricted value. This
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is however a problem with negative policies in all ABAC models that allow users to activate a
subset of their attributes (such as HGABAC) and not simply one limited to attribute delegation.

6.3 Delegation Model

6.3.1 Delegated Attribute Set
Several extensions to HGABAC model are required to support User-to-User attribute style
delegation. The most critical is the addition of the Delegated Attribute Set component (shown
in Figure 6.6 with the other extensions), which contains the set of attributes delegated to a user
in addition to the rules under which the delegation is permitted. This component is defined as
follows where DAS is the set of all Delegated Attribute Sets in the system:

∀das ∈ DAS :
das = (delegatee ∈ U, delegator ∈ U, att set, depth ∈ N≤0, rule set ⊆ P, parent ∈ DAS)

(6.1)

where delegatee is the unique ID of the user who is the recipient of the delegation, and delega-
tor is the unique ID of the user who initiated the delegation. att set is the set of attributes being
delegated and their corresponding values (defined the same as attribute sets in the HGABAC
model). The att set is constrained to only containing attributes listed in delegatable(delegator)
function (as defined in Section 6.3.2). depth is a positive integer selected by the delegator
that describes how many more levels of delegation are permitted (e.g. if the user can further
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delegate these attributes on to another user). rule set is the set of policies in the HGPL pol-
icy language selected by the delegator that must all evaluate to TRUE for the delegation to be
maintained. Finally, parent is a reference to another Delegated Attribute Set in the case of
subsequent delegations (see Section 6.3.3) or ∅ if this is the root of the delegation chain.

For example, the following Delegated Attribute Set would be created by the user Bob to
delegate their role and department attribute to Charlie as shown in Figure 6.5.

del att set = (
Charlie,
Bob,
{

(role, {“ f aculty” }),
(department, {“SoftEng”})

},
0,
{

“/environment/date < 2020 − 04 − 12”,
“/connection/ip = 129.100.16.66”

},
∅

)

(6.2)

In this case, the delegation is constrained with two policies; /environment/date < 2020-04-12

revokes the delegation if the current date is past April 12th, 2020 and /connection/ip =

129.100.16.66 only makes this delegation valid if the delegatee is connecting from the IP
address 129.100.18.66. A depth value of 0 limits the delegatee from further delegating these
attributes onto other users. A null parent (∅) indicates that this is the first level of delegation
and that Bob is first delegator in the chain.

6.3.2 Constraints on Delegatable Attributes
The set of attributes that may be assigned via delegation is not unlimited. There are two major
constraints placed on the attributes and values a delegator may pass on to a delegatee. The
first constraint is that delegator must have the delegated attribute and corresponding values in
their effective attribute set (i.e. the set of attributes directly assigned to the delegator combined
with those the delegator inherited from group membership). The second constraint placed on
delegatable attributes comes from the new Can Delegate (CD) relation added to the HGABAC
model (as shown in Figure 6.6). The CD relation allows a system administrator to directly
constrain the set of attributes a user may delegate to a finite list and is defined as follows:

∀cd ∈CD :
cd = (delegator ∈ U, att name ⊆ {name|(name, type) ∈ UA},max depth ∈ N≤0) (6.3)

where delegator is the unique ID of the user who is permitted to delegate the set of user at-
tributes listed in att name, a list of unique user attribute names from the set of all user attributes
(UA). max depth is a positive integer value that limits the value of deph used in the Delegated
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Attribute Set such that depth ≤ max depth. A delegator may not select a depth larger than
max depth when delegating an attribute in the set att name. A max depth of 0 would limit the
attributes from being further delegated.

The attributes a delegator may delegate is defined by the delegatable function which com-
bines both constraints and maps a user to the set of attributes they may delegate:

delegatable(u) = { att name | (att name, values) ∈ effective(u)
∧ att name ∈ att set
∧ (u, att set, depth) ∈ CD }

(6.4)

where u is the ID of the delegator and effective(u) is the delegator’s effective attributes set as de-
fined by HGABAC. The result is an attribute only being delegatable if it is both assigned to the
delegator normally (through User Attribute Assignment or User Group Attribute Assignment)
and explicitly permitted via the Can Delegate relation.

6.3.3 Subsequent Delegations & Delegation Chains

In addition to the attributes listed in delegatable(u), users may also further delegate attribute
sets they have been delegated so long as the maximum depth has not been reached. If a user,
u, wishes to delegate a set of attributes they have been delegated, dasold ∈ DAS, they create a
new Delegated Attribute Set, dasnew, such that:

dasnew = (
delegatee ∈ U,
u,
att setnew ⊆ dasold.att set,
depth < dasold.depth,
rule setnew ⊇ dasold.rule set,
dasold

)

(6.5)

That is dasnew must contain the same or a subset of the attributes of dasold, must have a depth
less than the depth listed in dasold, must have a rule set that is more restrictive than dasold (i.e.
must contain the same rules plus optionally any additional rules) and must list dasold as the
parent. These conditions ensure that subsequent delegations in a delegation chain are always
more restrictive than their parents, the maximum depth is maintained and that attribute sets
remain isolated.

An example delegation chain is shown in Figure 6.7. In this case, the user Bob is delegating
his role attribute with the value “faculty” and department attribute with the value “SoftEng”
to the user Charlie. This is the same delegation as discussed in 6.3.1 and Bob creates the same
DAS as shown in Equation (6.2) but with a depth of at least 1. This DAS is referred to as dasC.
The key difference is that Charlie now further delegates a subset of these attributes on to Dave
and Erin. In the case of Dave, Charlie delegates just the department attribute and in the case
of Erin, only the role attribute. To accomplish this, the following DASs are created, dasD for
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Bob Charlie

direct(Bob) = 

  {(role, {“faculty”}),

   (department, {“SoftEng”})}

                 

{(role, {“faculty”}),

 (department, {“SoftEng”})}

                 
Dave

{(department, {“SoftEng”})}

                 

Erin

Figure 6.7: Example delegation chain. Bob delegates a role and department attribute to Charlie, who
delegates the department attribute on to Dave and role attribute to Erin.

Dave and dasE for Erin:

dasD = (
Dave,
Charlie,
{ (department, {“SoftEng”}) },
0,
{

“/environment/date < 2020−04−12”,
“/connection/ip = 129.100.16.66”,
“/user/age >= 18”

},
dasC

)

(6.6)

dasE = (
Erin,
Charlie,
{ (role, {“Faculty”}) },
0,
{

“/environment/date < 2020−04−12”,
“/connection/ip = 129.100.16.66”,
“/environment/date < 2020−04−01”

},
dasC

)

(6.7)

dasD delegates the department attribute to Dave, but also adds in a new constraint on the
delegation, /user/age >= 18, which requires that the user of this attribute set must have an
age attribute in their effective attribute set (effective(u)) with a value equal to or greater than 18
for this delegation to be valid. All other constrains from dasC are present in dasD as required
by Equation (6.5). If the depth in dasC was greater than 0, and Dave further delegated this
attribute set on to another user, the /user/age >= 18 constraint would have to be maintained,
requiring all future delegatees in the chain to also be 18 years or older to use the delegated
attributes.



146 Chapter 6. Incorporating Off-Line Attribute Delegation into HGABAC

The dasE set delegates the role attribute to Erin, but also adds an additional constraint of
/environment/date < 2020-04-01 which invalidates the delegation after April 1st, 2020.
It is important to note that this does not conflict with the existing rule, /environment/date
< 2020-04-12, from the parent set, dasC, but further constrains it as all policy rules must
evaluate to TRUE for the delegation to be valid. In this way, subsequent delegators may tighten
constrains on delegations but not loosen them.

Cycles in the delegation chain are permitted but not useful as each child in the chain must
have the same or stricter constraints. The impact of such cycles is negligible as delegated
attributes are isolated from each other and the user’s effective attribute set as only one such set
may be activated in a given session as discussed in Section 6.3.4. Cycles are prevented from
being infinite in length as the depth of each set in the chain must be less than that of the parent
and eventually reach 0, preventing further delegation.

6.3.4 Sessions & Attribute Activation
An important feature of the proposed User-to-User Attribute Delegation model is the isolation
of delegated attributes from the user’s effective set of attributes as well from other delegated
attribute sets. This is accomplished through a modification of HGABAC’s session definition. In
the original HGABAC model, sessions are defined as a tuple of the form s = (u ∈ U, att set ⊆
effective(u), con atts) where u is the user the session belongs to, att set is the subset of the
user’s effective attributes being activated for this session and con atts is the set of connection
attributes that describe this session (e.g. IP address, time the session was started, etc.). To
support delegation, we update the definition of a session to the following:

s =(
u ∈ U,
att seteffective ⊆ effective(u) ∨ att setdelegated ∈ { del att set |

das ∈ DAS ∧ das = (u, delegator, del att set, depth, rule set, parent) },
con atts

)

(6.8)

Or more simply put, the activated attribute set in a session may now be one of att seteffective

or att setdelegated where att seteffective is any subset of the user’s effective attribute set (as per
the original HGABAC session definition) and att setdelegated is one of the delegated attribute
sets delegated to the user via the new Delegated Attribute Set component. This limits users
to either using their normally assigned attributes or one of their delegated attributes sets at a
time, eliminating or vastly reducing the issues discussed in Section 6.2.2 related to merging
delegated attribute sets.

6.3.5 Revocation
An important feature of the HGAA architecture is maintaining a separation between the At-
tribute Authority (AA) which grant attributes to users (via Attribute Certificate (AC)), and the
Policy Enforcement Points and Policy Decision Points. This separation provides an important
advantage in distributed and federated systems as no communication is required between the
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AAs and the services their attributes grant access to beyond a user passing on their AC. This,
however, raises a number of issues when it comes to revocation. As direct communication
between the AAs and other services is optional, an AA’s (and by extension its user’s) ability to
revoke delegated attributes is limited to the predefined delegation rules in the rule set compo-
nent of the DAS. As is shown in the example DASs (in Equations (6.2), (6.6) and (6.7)) these
rules may be any valid HGPL policy. If all policies evaluate to TRUE the delegation is valid, if
the result is FALSE or UNDEF it is considered to be revoked.

In cases of delegation chains (as shown in Figure 6.7), if any policy in a rule set is inval-
idated all subsequent delegations in the chain are also revoked. This is in part a consequence
of all rule sets in subsequent delegations being required to be a superset of the parent rule set
as is stated in Equation (6.5) (i.e. they must contain at least all policies in the parent rule set),
but it is further required that each user in the chain satisfies the policies in their own rule set.
For example, if the policy /user/age >= 18 is made a condition of a delegation from Bob
to Charlie and Charlie subsequently delegates the attributes on to Dave, both Charlie and Dave
must have their own age attribute that has a value of 18 or greater. The value of environment
and administrator attributes are determined based on their current value at the Policy Decision
Point. As the value of connection attributes for parents in the delegation chain may be unknown
or undefined, how they are evaluated is left as an implementation decision (i.e. conditions in-
volving connection attributes of parent users can be assumed to be TRUE, UNDEF, based on
the last known values, or based on their values at the time of delegation).

Formally, we define the recursive function active which takes a Delegatable Attribute Set,
das, and returns TRUE if the delegation is active (not revoked) and FALSE if the delegation is
considered to be revoked.

active(das) =



active(dasparent) if das.parent , ∅∧
das.depth < das.parent.depth∧
das.depth ≥ 0∧
das.att set ⊆ delegatable(das.delegator)∧
das.rule set ⊇ das.parent.rule set∧
∀rule ∈ das.rule set : valid(rule, das.delegatee) = TRUE

dasatt set ⊆ delegatable(das.delegator) if das.parent = ∅∧
∀rule ∈ das.rule set : valid(rule, das.delegatee) = TRUE

(6.9)

where valid is a HGABAC function which takes an HGPL policy and a user and returns TRUE
if the user satisfies that policy for the current value of that user’s attributes (including connec-
tion attributes) and the current state of the system (environment attributes and administrator
attributes), FALSE if the policy is violated and UNDEF if the policy cannot currently be eval-
uated.

A secondary means of revocation is possible through HGAA’s optional AC revocation lists.
In HGAA, each AA may publish a revocation list that includes the serial number of any revoked
AC issued by the authority. Policy Decision Points may optionally request this list either on
demand or periodically depending on the nature of their service and if communication with the
AA is possible. In the delegation framework detailed in the next section (Section 6.4), DAS are
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represented as special Delegated Attribute Certificates (DAC). These DACs may be revoked by
the same mechanism. If a revoked DAC is part of a delegation chain, all subsequent delegations
are also revoked.

6.4 Delegation Framework
The proceeding section (Section 6.3) laid out the theoretical delegation model and extensions
to HGABAC to incorporate User-To-User Attribute Delegation. This section seeks to provide
more practical details for how this delegation model may be implemented by extending HGAA
to create a supporting delegation framework. Two key aspects of HGAA need to be expanded;
the Attribute Certificate (AC) format to include delegation extensions and rules (detailed in
Section 6.4.2), and the communication steps between users and services to provide a full cer-
tificate chain (detailed in Section 6.4.1).

6.4.1 Protocol Additions

In HGAA, users are issued an AC from an AA’s Attribute Store Service. This document pro-
vides proof of a user’s attributes in a cryptographically signed document as well as providing
a mechanism for single sign-on and authentication with remote services. The AC format in-
cludes a listing of the user’s attributes, details of the issuing authority, a public key assigned
to the user, a range of dates for which the certificate is valid and a number of areas reserved
for future extensions. User’s prove ownership of an AC via a private key corresponding to the
public key embedded in the AC. As the certificate is signed and contains all information about
the user to base policy decision on, direct communication between the service being accessed
and the AA is not required.

In the original architecture, after being issued an AC, users use the certificate to make
requests on services. To support delegation, an additional delegation step is needed (as shown
in Figure 6.8 as step 4). Rather than directly querying services, a user may now delegate all or
a subset of the attributes in their AC to a third party by issuing a new AC called a Delegated
Attribute Certificates (DAC). The DAC is identical to an AC issued by an AA but lists the
delegator as the issuer and signer (rather than an AA), and the delegatee as the holder. The
extensions to the AC format to support DACs and delegation, detailed in Section 6.4.2, enable
the delegator to include delegation rules to trigger revocation (as discussed in Section 6.3.5), set
a maximum delegation depth for subsequent delegations and select what subset of the attributes
in their AC will be contained in the DAC (and delegated to the delegatee).

To complete the delegation, the delegator sends their AC and the new DAC to the delegatee.
The delegatee validates both by checking the following:

1. The original components of the AC are valid as described in [Servos and Osborn 2014]
(Chapter 3) (i.e. correctly signed by the AA, that the AC has not expired, etc.)

2. The ACHolder from the AC is the ACIssuer in the DAC (same UID, key, etc.).

3. The ACHolder given in the DAC is the delegatee (correct UID, public key, etc.).
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4. All attributes listed in the DAC are also found in the AC and have a maxDepth greater than
zero in the AC.

5. All attributes in the DAC have the delegator listed as the delegator and a maxDepth less than
or equal to the maxDepth in the DAC for that attribute.

6. The ACRevocationRules in the DAC are the same or stricter than in the AC.

7. The ACDelegationRules in the DAC are the same or stricter than in the AC.

8. The overall delegation depth in the DAC is less than the delegation depth in the AC and
greater than or equal to 0.

9. That the delegation has not been revoked (i.e. all delegation rules return TRUE).

10. The DAC is signed by the delegator with the public key listed in the ACHolder sequence of
the AC and the ACIssuer sequence of the DAC.

These checks enforce the rules on DASs described in Section 6.3.1 and ensure the delegation
has not been revoked (as per Section 6.3.5). If the AC and DAC are valid, the delegatee may
make requests upon services by sending both the AC and DAC with their request. The remain-
der of the HGAA protocol remains the same, but with the DAC being sent with the AC in steps
5 and 6 (Figure 6.8). The Policy Decision Point also makes the same checks (as listed above)
on the DAC when validating the deletagee’s attributes.

Subsequent delegations by the delegatee, to further delegatees, are supported. In such cases,
the delegatee becomes the delegator and issues a new DAC using the processes previously
described (their existing DAC becoming the AC and they become the issuer of the new DAC).
This creates a chain of certificates leading back to the AA, each certificate being signed by the
parent delegator. This process is shown in the Low Level Certificate Chain Diagram found in
Figure 6.9. To allow services and the Policy Decision Point to verify subsequent delegations,
each certificate in the chain is included with the first request upon a service and each certificate
is validated.

6.4.2 Attribute Certificate Delegation Extensions
To incorporate our delegation model and updated HGAA protocol, several extensions to the AC
format are required (described in Listing 6.1). The Attribute sequence is extended to include
a maxDepth and delegatorUniqueIdentifier value for each attribute in the certificate. delega-
torUniqueIdentifier states the ID of the original delegator (first in the chain) of the attribute
or no value if not delegated. maxDepth corresponds to the Can Delegate relation (defined in
Section 6.3.2) and has a value equal to 0 if this attribute cannot be delegated, 255 if there is no
limit on the delegation depth or some value between 1 and 254 equal to the maximum depth
allowed for this specific attribute.

Delegation rules from the DAS (defined in Section 6.3.1) are encoded in a new DACDele-
gationRule sequence which contains a HGPLv2 policy for each rule. The depth value from the
DAS is included in a new instance of the ACExtension sequence in addition to a record of the
original AA and the serial number of each certificate in the chain.
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Listing 6.1: Updates to the AC format to support Attribute Delegation written in ASN.1 notation. Bold
text indicate additions. Only updated sequences are shown.

A t t r i b u t e : : = SEQUENCE {

a t t r i b u t e I D OBJECT IDENTIFIER ,
a t t r i b u t e T y p e OBJECT IDENTIFIER ,
a t t r i b u t e V a l u e ANY DEFINED BY a t t r i b u t e T y p e OPTIONAL ,
a t t r i b u t e N a m e V i s i b l e S t r i n g OPTIONAL ,
maxDepth INTEGER(0..255),
delegatorUniqueIdentifier OBJECT IDENTIFIER OPTIONAL,

}

ACDelega t ionRules : : = SEQUENCE {

SEQUENCE OF DACDelegationRule
}

DACDelegationRule ::= SEQUENCE {
HGPLv2Policy VisibleString

}

– One instance of ACExtension with the following values
UToUAttDelv1 ACExtension ::= SEQUENCE {

extensionID ”ext:UToUAttDelv1”,
depth INTEGER(0..254),
rootAuthorityUniqueIdentifier OBJECT IDENTIFIER,
SEQUENCE OF DACCertificateSerial

}

DACCertificateSerial ::= SEQUENCE {
certificateSerial INTEGER

}

The extended AC is kept backwards compatible with the original AC format by only updat-
ing sections marked for future extension. The changes have a minimal impact on the certificate
size, adding at worst 3 + U bytes per attribute (where U is the size of the largest delegator
ID), 2 ∗ P bytes per delegation rule (where P is the maximum length of a HGPL policy), and
1 + S bytes per certificate in the chain (where S is the serial number size in bytes). A byte level
representation of the changes made to the AC is found in Figure 6.10.

6.5 Conclusions & Future Work
We have introduced the first model of User-to-User Attribute Delegation as well as a support-
ing architecture to aid implementation. Extensions to the HGABAC model (Section 6.3) add
relations for authorizing what attributes can be delegated (Can Delegate) and to what depth.
A new access control element, the Delegated Attribute Set, is added for representing current
delegations in the system and the restrictions placed on them. Delegated attributes are kept
isolated to prevent issues with Attribute Delegation, including user collusion and unexpected
side effects on policy evaluations.

Updates to the HGAA protocol and AC format have been made (Section 6.4) to support
the extended HGABAC model, including low level descriptions (Figures 6.9 and 6.10). These
changes to the AC format are minimal in size, scaling with the number of attributes, delega-
tion rules, and certificates in the chain. As changes have only been made to sequences marked
for future expansion, the extended AC format remains backwards compatible with the original
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HGAA AC. Care has been given to ensure that delegation is preformed in an “off-line” man-
ner, without the need to contact a third party, to maintain the distributed nature of HGABAC
and HGAA. However, support for “off-line” delegation comes at the cost of revocation flex-
ibility and limits the possibility for real time revocation invoked by the delegator. To combat
this, HGPL policies are used to embed delegation rules that trigger revocation as described in
Section 6.3.5.

This work is part of an ongoing effort towards introducing delegation to ABAC and di-
rections for future work will follow this path. To date, models for User-To-User Attribute
Delegation (this chapter) and User-to-Attribute Group Membership Delegation [Sabahein et al.
2018] have been completed. The next steps will be to create models for the remaining strategies
described in [Servos and Osborn 2016] (Chapter 4) in addition to reference implementations
such that they can be fully explored, evaluated and compared. Directions for the User-To-User
Attribute Delegation model include exploring the use of a “Can Receive” relation for users
in place of the “Can Delegate” relation for attributes and experimenting with adding con-
straints that prevent specified users form being delegated a restricted attribute (e.g. to prevent
certain users from stratifying a policy via delegation). Such “Can Receive” relations have been
used successfully in RBAC delegation models[Crampton and Khambhammettu 2008] and have
been shown to be more flexible. Work is needed to see if the same will hold true for delega-
tion in ABAC. Finally, a more thorough evaluation of our delegation model is planned that
will involve both formal validation (safety analysis) and experimental evaluation (reference
implementation). Evaluating the overhead and impact of the size of delegation chains on cer-
tificate verification as well as the impact of the size and complexity of delegation rules will be
an important future direction for such experimental evaluation. Delegatable Attribute-Based
Anonymous Credentials (DAAC)[Blömer and Bobolz 2018] and related works that do not re-
quire the verification of certificate chains may provide an alternative to the HGAA Attribute
Certificate. Determining if it is possible to incorporate DAAC into HGAA’s “off-line” design
will also be an important area to investigate in future efforts.
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Chapter 7

Conclusions and Future Work

7.1 Reverse Literature Search

To show the significances and impact the research in this thesis has made to date, a brief
“reverse literature search” is presented in this section of the publications that were influenced
by or built on the work presented in Chapters 3 to 5 (Chapter 6 was not yet published at the time
of writing but has since been presented at The 12th International Symposium on Foundations
& Practice of Security (FPS’2019)).

7.1.1 Extensions to and Reformalizations of HGABAC

Since its publication in 2014, HGABAC has attracted the interest of a number of authors in
the ABAC field. Several have put forth independent efforts to extend or otherwise reformal-
ize the HGABAC model to add new capabilities or support addition access control concepts
(e.g. administration). Of note is Gupta and Sandhu’s work [Gupta and Sandhu 2016] towards
creating an administrative model for HGABAC, entitled (GURAG), built upon the preexisting
Generalized URA Model (GURA) model [Jin et al. 2012a] for User-Role Assignment (URA).
GURAG is comprised of three sub-models, UAA (for the assignment of user attributes to users),
UGAA (for the assignment of user attributes to groups), and UGA (for the assignment of users
to groups). GURAG uses special administrative roles (as do GURA and URA97 [Sandhu et al.
1999] upon which GURAG is based) to assign administrative permissions to system adminis-
trators. These permissions grant the administrator the ability to add or delete attributes from
the UAA or UGAA assignments and to remove or add users to the UGA assignment. Differ-
ent administrative roles may have distinct conditions placed on these permissions. While the
(GURAG) model does not yet touch on object attributes or object attribute groups (although
this is stated as a possible direction for future work), it is currently the best, and only, effort
towards an HGABAC specific administrative model.

A second work of note is the undertaking by Bhatt et al. [Bhatt et al. 2017; Bhatt 2018]
to create an implementation of HGABAC utilizing the NIST Policy Machine (PM) [Ferraiolo
et al. 2011, 2015]. To accomplish this feat, a more restricted model of HGABAC, entitled
Restricted Hierarchical Group and Attribute-Based Access Control (rHGABAC), was created
and formalized as a single-value enumerated policy. Due to this single-value enumeration

156
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(vs. the enumerated policies used in HGABAC and other models), rHGABAC is unable to
represent all policies possible in the full HGABAC model (i.e. rHGABAC is unable to represent
conjunctive policies). While limiting, this restriction is advantageous for use with the PM as
it is also a single-value enumerated authorization policy. Using rHGABAC, Bhatt et al. were
able to configure the PM for HGABAC and compare policy evolution times with a Role-Centric
ABAC configuration and show that HGABAC had comparable times.

7.1.2 Attribute Groups and Hierarchies
In addition to extensions to HGABAC, numerous works have adopted or explored using the
novel concept of hierarchical user and object attribute groups HGABAC introduced into their
own ABAC models and frameworks. A recent publication of note is Fernández et al.’s [Fernández
et al. 2019; Fernández and Thuraisingham 2018] proposed “pure”1 ABAC model, abbreviated
as C-ABAC, based on the notion of category from Barker’s 2009 unifying access control meta-
model [Barker 2009]. In C-ABAC, entities (users, objects, etc.) are assigned to categories
based on their attributes and categories of entities, as a whole, are assigned permissions. While
similar to HGABAC’s notation of groups, categories are distinct in that assignment to a cate-
gory is based on the entities attributes as opposed to being manually assigned. Fernández et al.
also define a version of C-ABAC that supports HGABAC style hierarchical groups based on a
restricted version of HGABAC that lacks sessions [Fernández et al. 2019].

Several recent “domain specific”2 ABAC models have also included the HGABAC concept
of attribute groups and hierarchies. Gupta et al. [Gupta et al. 2019a,b] present an ABAC
model targeted at next-generation smart cars referred to as CV-ABACG (“CV” presumably
standing for “connected vehicles”). CV-ABACG is a hierarchical group based model that
uses physical location groups that are dynamically assigned to vehicles based on their current
location, attributes and/or personal preferences. Location groups are hierarchical, with child
groups inheriting the attributes of parent groups (as is standard in HGABAC groups).

A second but distinct effort, also by Gupta et al. [Gupta et al. 2018], aims to create an
ABAC model for big data processing in the Hadoop framework3. Gupta et al. put forth an
ABAC model, entitled HeABAC, for securing a multi-tenant Hadoop ecosystem that may be
implemented using Apache Ranger. HeABAC is an evolution of OT-RBAC [Gupta et al. 2017],
an earlier RBAC based Hadoop focused access control model. Both HeABAC and OT-RBAC
incorporate hierarchical user groups directly inspired by HGABAC that support inheritance
from parent groups. In OT-RBAC, this takes to form of user groups that are assigned and inherit
roles (which in turn grant permissions in the manner of RBAC). In HeABAC, user groups
function more similarly to HGABAC groups, that is, they are assigned and inherit user and
subject attributes (subject attributes being distinct from user attributes in the HeABAC model).
Both models are proposed to be implementable as plug-ins for Apache Ranger4 but actual
implementation is left to future work.

Beyond the scope of ABAC models is Manar et al.’s [Alohaly et al. 2019] approach to min-
ing Natural Language Access Control Policy (NLACP) into machine readable ABAC policies

1As defined in Chapter 2 Section 2.2.
2See Footnote 1.
3https://hadoop.apache.org/
4https://ranger.apache.org/

https://hadoop.apache.org/
https://ranger.apache.org/
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using machine learning and natural language processing techniques. HGABAC is chosen by
Manar et al. as the reference ABAC model for this endeavour as its hierarchical structure bet-
ter reflects the requirements of real-world organizations. HGABAC user and object groups are
used as a hierarchical namespace for classifying attributes mined from policies.

7.1.3 Implementation of Delegation Strategies

The delegation strategies laid out in Chapter 4 (published as [Servos and Osborn 2016]) de-
scribe a number of approaches for incorporating delegation in modern ABAC models. While
each strategy is categorized, detailed and the trade-off discussed, the actual formalization and
implementation of each strategy into a working model is left to future work. To date, at least
one work (excluding our own effort detailed in Chapter 6) by others has taken the blueprints
developed in Chapter 4 and created a their own attribute-based delegation model. Sabahein
et al. [Sabahein et al. 2018] extend the HGABAC model to support User-to-Attribute Group
Membership Delegation as described in Chapter 4 Section 4.2.2.2 with an end goal of manag-
ing information sharing in a cloud based healthcare information system. A formal revocation
system is developed to supplement the delegation model which supports both revocation initi-
ated by a delegator and as a result of its lifetime expiring. Options are given to support local
or global propagation (non-cascading or cascading revocations of subsequent delegations) as
well as deal with conflicts arising from delegations from multiple delegators to the same del-
egatee (i.e. dominance). Finally, a XACML based architecture and new ABAC specification
language are proposed to support their extended HGABAC model. Problems with conflict-
ing policy evaluations and user collusion identified as key issues with User-to-Attribute Group
Membership Delegation in Chapter 4 are left to future work by the authors.

The work in Chapter 4 has also aided in brining to light a number of possible issues with
delegation in attribute-based and other next generation access control models that need to be
addressed by researchers creating new and novel delegation models. The issue of user conclu-
sion (in which two or more users could collude to create a delegation with more permission
than either user could achieve individually) for instance is already being discussed and avoided
in other works [Al-Wahah and Farkas 2018; Sabahein et al. 2018] to some extent based on its
description in [Servos and Osborn 2016].

7.2 Concluding Remarks

In Chapter 1 Section 1.3.1, a number of goals for this research were outlined in addition to
the more general goal of solving a number of the open problems identified in our survey of
current ABAC literature (Chapter 2 Section 2.4). These goals included; 1. creating a hierar-
chical ABAC model, 2. representing the traditional models (MAC, DAC, RBAC) in ABAC, 3.
ensuring support for distributed systems, 4. providing a supporting architecture to “fill in the
gaps”, and 5. incorporating delegation into ABAC.

To satisfy these goals a number of contributions were developed and published to aid in the
wider adoption of ABAC. These contributions are summarized in the following subsections
(Sections 7.2.1 to 7.2.5) and details are given to show how they work towards fulfilling each
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Table 7.1: Major Contributions vs. Research Goals. Check marks (3) indicate that this contribution
aided in satisfying the corresponding goal.

HGABAC
(Chapter 3)

HGAA
(Chapter 5)

Delegation
Strategies
(Chapter 4)

User-To-User
Attribute

Delegation
(Chapter 6)

Hierarchical
ABAC Model 3

Representing
Traditional
Models

3

Support for
Distributed
Systems

3 3

Supporting
Architecture 3 3

Delegation 3 3

stated goal. Table 7.1 summarizes the contribution of each chapter (excluding Chapter 2 from
which the goals are in part derived) towards a corresponding research goal.

7.2.1 Survey and Taxonomy of ABAC Models

When conducting the literature review in Chapter 2, few if any, works had sought to provide a
detailed survey of the current ABAC related research. The main contribution of Chapter 2 was
providing such a survey as well as the identification of open problems (Chapter 2 Section 2.4)
and gaps in the literature at the time. The problems identified aided in setting the direction and
goals for the research contained in this thesis as well as outlining directions for future work in
the field as a whole that needs to be addressed for ABAC to become a widely accepted model
of access control.

The taxonomy provided as part of the survey (Chapter 2 2.2), categorizes the body of ABAC
research into hierarchical subcategories to ease discussion and comparisons of closely related
works. Of particular note is the categorization of ABAC models into “pure” models, that are
not extensions to existing or traditional models, and “hybrid” models, which add attribute-
based features to existing access control models. “Pure” are further subdivided into “general”
and “domain specific” based on if the model is designed for a specific application or for general
access control use.

A key finding of the review was that ABAC publications (in particular new models and
formalizations of ABAC) had been steadily increasing since 2005 up to at least the time the
review was completed in 2014 (Chapter 2 Section 2.1). Despite this clear interest, there was still
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little standardization and many critical access control aspects like delegation, administration,
hierarchical structures, SoD, etc. had been overlooked or left to future work. These issues had
hindered acceptance of ABAC outside of academia and lead in part to the creation of HGABAC
in an effort to provide solutions to at least a few of these roadblocks.

7.2.2 Hierarchical Group and Attribute-Based Access Control (HGABAC)
The creation of the HGABAC model was motivated by the lack of formalized general purpose
ABAC models available at the time and sought to bring hierarchical group based representa-
tions to ABAC, something that was novel at the time and could greatly aid in reducing the
complexity of administering user and object attributes. Secondary goals were to allow for new
ways to represent the traditional models of access control in ABAC and provide a simplified
but still flexible policy representations to both aid in user comprehension and make reasoning
about the security of such policies easier. At the time, Jin et al. had recently published their
ABACα [Jin et al. 2012b] model which included representations for MAC, DAC and RBAC
based policies without the use of groups (instead of relying on attributes that held partial or-
dered sets of values). HGABAC showed that these policies could also be represented with
hierarchical groups (Chapter 3 Section 3.5) and that fewer attribute assignments were needed
in the case of most policies (Chapter 3 Section 3.4.2).

The “administrative attribute”, a new attribute type that acts as a system wide semi-
permanent constant was also introduced by the HGABAC model. This attribute type allows
for system administrators to set global variables that may affect all policies that include them
regardless of the user or object involved. For example, a threat level administrative attribute
may be created that changes the strictness of policies based on its value.

The policy language introduced by HGABAC (Chapter 3 3.3.2), now referred to as Hierar-
chical Group Policy Language (HGPL), provides a simplified language for specifying ternary
policy statements based on Kleene K3 logic [Kleene 1938]. HGPL closely resembles C-style
boolean statements, but with an additional possible result of “UNDEF” added to the traditional
“TRUE” and “FALSE”. This resemblance aids both policy authors and users by putting access
control policies in a more straightforward familiar form. Hierarchical Group Policy Language
(HGPL) was further updated in Chapter 5 5.4.1, as HGPLv2, to include support for attribute
namespaces and improvements to aid parsing by the HGPLv2 interpreter.

Since the publication of [Servos and Osborn 2014], the concept of hierarchical attribute
groups introduced by HGABAC has seen some acceptance and impact in the ABAC literature
(as described in Section 7.1) primarily for its simplification of attribute administration. While
this core contribution provided a formal model of ABAC, it was not enough on its own to base
a full access control system on. There was a clear need for a supporting architecture to fill in
the gaps between a model and implementable system. This need lead to the development of
the supporting HGAA architecture.

7.2.3 Hierarchical Group Attribute Architecture (HGAA)
The HGAA architecture presented in Chapter 5 provides solutions to a number of implemen-
tation questions left unanswered by the HGABAC model on its own. Questions like “what
service assigns the attributes?”, “how are attributes shared with each party?”, “how does the



7.2. Concluding Remarks 161

user provide proof of attribute ownership?”, and “where and how are policies evaluated?”
resolved through four key contributions; the HGAA architecture and protocol, a new Attribute
Certificate (AC) format, a URI based attribute namespace and a HGPLv2 policy language in-
terpreter.

The HGAA architecture details the services required for the sharing of attributes and users
between isolated security domains and explains how access control decisions can be made
independently of the users identity and without directly connecting to their home domain. A
high level protocol is documented that explains what information is exchanged between each
service. Particular effort was taken to ensure the functionality of the architecture in distributed
environments (an ongoing goal of this research) and that users could be authenticated in an
“off-line” manner (i.e. without having to directly request information from their home domain
or third party).

The “off-line” authentication and interoperability between independent security domains is
made possible in HGAA in part by the concept of the Attribute Certificate (AC) introduced in
Chapter 5 Section 5.4.3. The AC format provides a cryptography secure document for sharing
a user’s attributes (including connection attributes) with third party services. Revocation rules
are included in the AC to invalidate the certificate after set rules are triggered (limited to an
expiry date and revocation list in the first version of the AC format). A number of points for
extensions were intentionally included in the AC to allow for the future work in Chapter 6 to
support delegation as well as future use in other research projects.

Updates to the HGPL policy language including a namespace for attributes and other
HGABAC elements were introduced (Chapter 5 Sections 5.4.1 and 5.4.5) to allow them to
be uniquely identifiable across independent organizations and further increase the flexibility of
the policy language. A prototype interpreter for the HGPLv2 language was implemented and
a number of optimization steps were suggested to improve policy evaluation time. Prelimi-
nary results from evaluating both the prototype interpreter and HGAA services were promising
(Chapter 5 5.5), showing that AC size and time to generate grew linearly with the number of
user attributes it contained. Time for services to process and execute requests also grew linearly
with the number of user attributes and a similar linear growth pattern was found for the policy
language interpreter based on the number of AST nodes a policy contained. These findings
suggest that a full real-world implementation of HGAA would be reasonably scalable in most
settings, including distributed environments.

7.2.4 Delegation Strategies
The delegation strategies put forth in Chapter 4 speculate about the feasible ways in which dele-
gation can be incorporated into ABAC models with attribute group support such as HGABAC.
These strategies, developed by appraising each combination of three access control compo-
nents; a delegator, a delegatee and a delegatable access control element, are categorized into
three families (Attribute Delegation, Group Membership Delegation and Permission Delega-
tion) based on the access control element being delegated. Each family of strategies is evaluated
for advantages, disadvantage and potential security issues (e.g. possibility for user collusion).
The result of this evaluation (summarized in Chapter 4 4.4.1) provides a useful contribution as
a guideline for the selection of delegation strategy to be utilized when creating a new ABAC
delegation model. As no one strategy is ideal in all cases, such a guideline is important for
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understanding the trade-offs associated with each method of implementing delegation and the
potential security issues associated with it.

Beyond leading to the creation of the User-to-User Attribute Delegation model formal-
ized in Chapter 6, the strategies developed in Chapter 4 have already had some impact on
the development of ABAC (and other) delegation models by other researchers as discussed in
Section 7.1.3. It is anticipated these strategies will continue to play a role in guiding the devel-
opment of future ABAC delegation models and have at very least identified possible attribute-
based delegation models that have not yet been formalized or explored in the current literature.

7.2.5 User-to-User Attribute Delegation

The last major contribution is the User-to-User Attribute Delegation model for HGABAC intro-
duced in Chapter 6 which consists of an extension to HGABAC as well as updates to HGAA
(including the AC format). These extensions implement and formalize the User-to-User At-
tribute Delegation strategy from Chapter 4 into a new and novel attribute-based delegation
model, satisfying the goal of bringing delegation to ABAC.

Changes to the AC format take advantage of places left for future expansion and delegation
extensions as outlined in Chapter 5 5.4.3. This update to the AC allows for User-to-User dele-
gation to be performed in an “off-line” manner, that is, without connecting or communicating
with a third party. After users are issued an AC from an attribute authority, they may delegate
attributes marked as delegatable to another user without connecting to any service or commu-
nicating with any actor other than the delegatee by issuing an Discretionary Access Control
(DAC). This is a critical feature as it further aids in supporting distributed systems (in which
direct communication with the issuing attribute authority may not be possible or prohibitively
costly) and distinguishes this work from other attempts at using the delegation strategies from
Chapter 4 to create a delegation model for HGABAC such as that by Sabahein et al. [Sabahein
et al. 2018] (previously discussed in Section 7.1.3).

7.3 Directions for Future Work

A number of directions for future work have been identified during the course of this research,
both for the area of ABAC in general and specific to the proposed models, frameworks and
architectures presented in this thesis. The following subsection summarize the possible di-
rections identified in each chapter (Chapters 2 to 6) and briefly discuss recommendations for
research towards potential solutions.

7.3.1 Surveying ABAC

The literature survey in Chapter 2 offered one of the first large scale reviews of ABAC related
research, however, a number of areas were left unexplored or out of the scope of the work.
The survey focusses on covering a wide range of models in breadth, leaving room for further
survey works to explore specific categories or aspects of ABAC models in-depth. In particular,
an analysis of how current models represent attribute-based policies or an in-depth review of
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specific subcategories of models (e.g. a closer look at Pure General ABAC models) would be
beneficial to the community.

As the focus of the survey was models and access control frameworks, reviews of non-
model related attribute topics such as attribute & policy mining, attribute storage & sharing,
attribute confidentiality & privacy, attribute-based policy languages, and supporting model in-
dependent architectures could also be of interest and open to further surveying.

Since the publication of the survey as [Servos and Osborn 2017], a number of new ABAC
efforts have been released. An update to the survey to include more recent research would help
to keep up with the rapid developments in the field.

Chapter 2 also identified a number of open problems that were out of the scope of the re-
search contained in this thesis. These are outlined in depth in Chapter 2 Section 2.4 but include
issues such as; Auditability (Chapter 2 Section 2.4.4), Separation of Duties (Chapter 2 Sec-
tion 2.4.5), Administration (Chapter 2 Section 2.4.9), and Formal Security Analysis (Chapter 2
Section 2.4.10). While not addressed directly by this research, solving these issues are impor-
tant for making ABAC more usable, secure and aiding in more wide scale acceptance outside
of academia.

7.3.2 Hierarchical Group and Attribute-Based Access Control (HGABAC)
HGABAC successfully formalizes a model of ABAC with hierarchical group support and later
extensions add User-to-User delegation. However, there are still a number of areas for poten-
tial improvement or exploration. Perhaps the most important direction for future extension to
model is adding support for Separation of Duties (SoD). SoD is the concept of segregating
users effective permissions such that more than one person is required to complete a task to
help prevent fraud, error or conflicts of interest. Currently, HGABAC has no explicit support
for SoD, although some limited form may be possible through complex HGPL policies. Work
is needed to show that HGPL is flexible enough to enforce SoD constraints and/or to update
HGPL and HGABAC to directly support SoD constraints. A number of recent works have
sought to introduce SoD to ABAC, including the constraint specification language by Bijon et
al. [Bijon et al. 2013], the fromalization of SoD constraints for ABAC components by Jha et
al. [Jha et al. 2017], and the AHCSABAC model by Singh [Singh 2016] which includes SoD
constraints. More research is needed to see if these could be incorporated with the HGABAC
model or HGPL.

A second issue not address by HGABAC, is the administration of users, attributes, per-
missions and policies. HGAA lays out where administrative services would fit in the system’s
architecture and how they would exchange information, but an actual administration model
and implementation of administrative services was left for future work. Some recent efforts
have put forth a start at extending HGABAC with an administration model, such as GURAG

[Gupta and Sandhu 2016], however much more needs to be done before a full implementation
is possible (such as supporting object attribute groups in GURAG).

The HGPL policy language introduced with the HGABAC model and updated in Chapter 5
(to support attribute namespaces and HGAA) provides a good first effort towards a simplified
but flexible general use attribute-based policy language for both academic and real world use,
however, there are still a number of areas that could be enhanced. As previously mentioned,
SoD constraints are needed to enforce the concept of separation of duties and aid in better
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representing RBAC policies (that may contain SoD constraints). Exploring using XACML
and other existing generic policy languages with HGABAC, in place of HGPL, could lead to
a better understanding of both the performance trade-offs, flexibility and administrator/user
comprehension benefits of HGPL based policies.

While there has been a significant push for the adoption and development of ABAC[Council
and Architecture 2011; of the Press Secretary 2012; Hu et al. 2013], many systems and orga-
nizations are still using access control systems and policies based on the traditional models
(namely RBAC). Work will be needed to study how ABAC models such as HGABAC can be
used in conjunction with existing legacy RBAC systems or how the migration to next genera-
tion access control systems can be automated and simplified. A possible step in this direction,
are the hybrid models discussed in Chapter 2 Section 2.3.2 which add attributes and rule-based
policy concepts as extensions to the traditional models. Many of these hybrid models follow
one or more of the possible strategies for adding attributes to RBAC outlined and discussed
by Kuhn et al. [Kuhn et al. 2010]. Another direction would be providing tools to map RBAC
policies to HGABAC policies and group hierarchies which are capable of encapsulating and
enforcing RBAC based policies (as described in Chapter 3 Section 3.5.3).

The addition of conditional user and object groups, in which users (or objects) are automat-
ically added to groups based on set policies is another interesting possible future direction for
extending HGABAC. Such automation could further simplify administration and have interest-
ing implications that are worthy of future research. A number of works, such as the C-ABAC
model [Fernández et al. 2019; Fernández and Thuraisingham 2018], have already made some
progress in this direction (as discussed in Section 7.1.2) but it remains to be seen if the same
technique would be appropriate and useful for HGABAC.

Lastly, a full reference implementation of HGABAC and HGAA is needed to aid in “real
world” acceptance and use outside of academia. Current efforts to date have centered around
“research grade” implementation of specific components for the purposes of evaluation and
comparison with other models/architectures and are not yet suitable for secure “real world”
use.

7.3.3 Hierarchical Group Attribute Architecture (HGAA)

The HGAA architecture introduced in Chapter 5 intentionally leaves room for future exten-
sions and efforts to improve the architecture. One such extension is the work in Chapter 6
that adds User-to-User delegation to HGABAC and HGAA. However, there is still room for
further extensions. The Attribute Certificate (AC) format described in Chapter 5 Section 5.4.3
allows for certificate revocation via an expiry date or revocation list, but room is left for future
extensions to add more complex revocation rules. Work is needed to explore if using HGPL
based revocation rules based on user, connection, environment, or other attribute values could
provide a more flexible, scalable and robust AC revocation system.

Creating a version of HGAA using existing generic access control standards such as XACML,
SAML, Kerberos[Neuman and Ts’o 1994], and/or pure X.509 attribute certificates would al-
low for a more in-depth comparison of the performance and flexibility of HGAA vs. what is
currently available. Utilizing XACML and SAML could also lead to greater compatibility with
existing system and aid acceptance in the “real world”.



BIBLIOGRAPHY 165

Further work is also needed towards testing the utility and effectiveness of HGAA in non-
traditional computing paradigms including Internet of Things (IoT), embedded systems, use
with physical smart identity cards, smart connected vehicles and cloud computing. In some
cases, alternative architectures for HGABAC may be more appropriate or have distinct advan-
tages for particular use cases. It is likely that a number of “domain specific” architectures or
extensions to HGAA will be needed to handle a number of these nontraditional paradigms.

Finally, HGAA has a number of future directions in common with HGABAC, including the
need for administration services (currently left unimplemented), the need for a reference im-
plantation for secure “real world” use, and a more formal security analysis of the framework.

7.3.4 Delegation

The main long term direction for delegation in HGABAC and HGAA, is the formalization
and implementation of each delegation strategy in Chapter 4. To date, User-to-User Attribute
Delegation (Chapter 6) and User-to-Attribute Group Membership Delegation [Sabahein et al.
2018] have been formalized but the remainder are only described informally. Working imple-
mentations of each strategy would allow for more comprehensive and quantitative evaluations.
Research exploring combining or utilizing multiple delegation strategies simultaneously could
also provide new possibilities for delegation that might aid in overcoming limitations of indi-
vidual strategies but risk introducing new conflicts and security issues.

In terms of the User-to-User Attribute Delegation model described in Chapter 6, replacing
the “Can Delegate” relation for designating what attributes users can delegate with a “Can
Receive” style relationship may lead to a more flexible delegation model. Such a relation
has been used successfully for RBAC [Crampton and Khambhammettu 2008] and is used in
Sabahein et al. [Sabahein et al. 2018] User-to-Attribute Group Membership Delegation model
but work is needed to explore its potential for User-to-User Attribute Delegation.
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Appendix B

HGPLv1 Policy Language Operations
The following table outlines the function of the comparison operations in the policy language

defined in Section 3.3.2. Note that a poset element is considered to be a special case of atomic
where the comparison operations =, ,, >, <, ≥, ≤ are all based on the order of the poset but
otherwise follow the above table.

Table B.1: HGPLv1 policy language operations and results.

Type Operation Type Result
atomic = atomic True if values are equal, undef if incomparable, false

otherwise
atomic = set True if atomic ∈ set.
set = atomic True if atomic ∈ set.
set = set True if sets are equal (i.e. contain same elements).
X , Y Equivalent to “NOT(X = Y)”.
atomic IN atomic UNDEF
atomic IN set True if atomic ∈ set.
set IN atomic True if atomic ∈ set.
set1 IN set2 True if ∃s ∈ set1 : s ∈ set2.
atomic SUBSET atomic UNDEF
atomic SUBSET set True if atomic ∈ set.
set SUBSET atomic False unless |set| = 1 and set = {atomic}.
set1 SUBSET set2 True if set1 ⊆ set2.
atomic1 C = >, <, ≤, or ≥ atomic2 True if atomic1 C atomic2, undef if incomparable,

false otherwise.
atomic C = >, <, ≤, or ≥ set True if ∃s ∈ set : s C atomic.
set C = >, <, ≤, or ≥ atomic True if ∃s ∈ set : atomic C s.
set1 C = >, <, ≤, or ≥ set2 True if lub(set1) C glb(set2).

NOT X True if X is false, false if X is true, undef if X is un-
def and undef if X is not a Boolean value or logical
expression.

(user.some att) True if (some att, x) ∈ effective(u) where x is any
value including NULL.
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