
Incorporating Off-Line Attribute Delegation into
Hierarchical Group and Attribute-Based Access

Control

Daniel Servos and Michael Bauer

Department of Computer Science, Western University, London, Ontario, Canada
{dservos5,bauer}@uwo.ca

Abstract. Efforts towards incorporating user-to-user delegation into
Attribute-Based Access Control (ABAC) is an emerging new direction in
ABAC research. A number of potential strategies for integrating delega-
tion have been proposed in recent literature but few have been realized
as full ABAC delegation models. This work formalizes one such strategy,
entitled User-To-User Attribute Delegation, into a working delegation
model by extending the Hierarchical Group and Attribute-Based Access
Control (HGABAC) model to support dynamic and “off-line” attribute
delegation. A framework to support the proposed delegation model is
also presented and gives implementation details including an updated
Attribute Certificate format and service protocol based on the Hierar-
chical Group Attribute Architecture (HGAA).

Keywords: Delegation ·Attribute-Based Access Control ·ABAC ·HGABAC

1 Introduction

Attribute-Based Access Control (ABAC) is an access control model in which
users are granted access rights based on the attributes of users, objects, and the
environment rather than a user’s identity or predetermined roles. The increased
flexibility offered by such attribute-based policies combined with the identityless
nature of ABAC have made it an ideal candidate for the next generation of
access control models. The beginnings of ABAC in academic literature date
back as early as 2004 with Wang, et al’s Logic-Based Framework for Attribute
Based Access Control [9] and even earlier in industry with the creation of the
eXtensible Access Control Markup Language (XACML)[1] in 2003. However, it is
only in recent years that ABAC has seen significant attention[7]. This renewed
interest has lead to the development of dozens of ABAC models, frameworks
and implementations, but to date, few works have touched on the subject of
delegation or how it might be supported in attribute-based models.

Delegation is a key component of comprehensive access control models, en-
abling users to temporarily and dynamically delegate their access control rights
to another entity after policies have been set in place by an administrator. This
ability allows users to adapt to the realities of everyday circumstances that are

2 D. Servos and M. Bauer

not possible to foresee during policy creation and is critical in domains such
as healthcare[3]. ABAC brings new problems and complications when incorpo-
rating delegation that are not present in the traditional models (RBAC, DAC,
MAC etc.) [6]. In the traditional models, delegation is relatively straightforward,
a set of permissions or role memberships (as in RBAC) is delegated directly by a
delegator to a delegatee under set conditions (e.g. an expiry date or “depth” of
delegation). In ABAC, this is complicated by identityless nature of ABAC (i.e.
access control decisions being made on the basis of attributes rather then the
user’s identity) and the flexibility of attribute-based policies that may include
dynamic attributes such as the current time, physical location of the user, or
other attributes of the system’s environment.

In a previous work[6], we offered a preliminarily investigation into the possible
strategies for incorporating delegation into ABAC and the benefits and draw-
backs of each method. A number of these proposed strategies have been further
developed into working models by others, such as the work by Sabathein, et al.[4]
towards creating a model of delegation for the Hierarchical Group and Attribute-
Based Access Control (HGABAC)[5] model using our User-to-Attribute Group
Membership Delegation Strategy[6]. In this paper, we seek to explore and put
forth a novel attribute-based delegation model based on an unutilized delegation
strategy, User-to-User Attribute Delegation[6]. We offer both an extension to the
HGABAC model to provide a theoretical blueprint for incorporating delegation
as well as an extension to Hierarchical Group Attribute Architecture (HGAA)[8]
to provide a practical means of implementing it. Unlike current efforts, a partic-
ular emphasis is placed on maintaining the identityless nature of ABAC as well
as the ability to delegate attributes in an “off-line” manner (i.e. without the user
having to connect to a third party to perform delegation).

The remainder of this paper is organized as follows; Sec. 2 introduces the
potential delegation strategies developed in our previous work and gives back-
ground on the HGAA and HGABAC model. Sec. 3 details our model of User-to-
User Attribute Delegation and how it is incorporated into the HGABAC model.
Sec. 4 provides a framework for supporting our delegation model and details
modifications to the HGAA architecture to support it, including new extensions
to the Attribute Certificate format to include delegation concepts. Finally, Sec.
5 gives concluding remarks and directions for future work.

2 Background

2.1 The HGABAC Model

HGABAC[5] offered a novel model of ABAC that introduced the concept of hi-
erarchical user and object groups. Attributes are assigned both directly to access
control entities (e.g. users and objects) and indirectly assigned through groups.
Users then have a direct set of attributes, directly assigned by an administrator,
as well as an inherited set of attributes, indirectly assigned to them via their
membership in one or more user groups. The set of attributes used for policy
evaluations is the user’s effective attribute set, that is, the set that is the result

Incorporating Off-Line Attribute Delegation into HGABAC 3

User
Attributes

Object
Attributes

Users

Objects

User
Groups

Sessions

User Group
Hierarchy

User Group
Hierarchy

User Group AssignmentUser Group Assignment

User Group
Attribute

Assignment

User Group
Attribute

Assignment

User Attribute
Assignment

User Attribute
Assignment

Attribute
Activation
Attribute
Activation

User SessionUser Session

Policies Operations

Permissions

Object Attribute AssignmentObject Attribute Assignment

Object
Groups

Object
Group

Assignment

Object
Group

Assignment

Object Group
Attribute

Assignment

Object Group
Attribute

Assignment

Object Group
Hierarchy

Object Group
Hierarchy

Environment
& Admin

Attributes

Connection
Attributes

Fig. 1. HGABAC relations and components denoted in Crow’s Foot Notation. Primi-
tive components are shown in ovals.

of merging their direct and inherited attribute sets. This style of group mem-
bership and attribute inheritance is also used to assign attributes indirectly to
objects via objects membership in object groups. These relations and the basic
elements of HGABAC are shown in Fig. 1 and a brief description of the basic
HGABAC entities, relations and functions are as follows:

– Attributes: attributes are defined as attribute name, type pairs, that is att =
(name, type), where name is a unique name for the attribute and type is a data type
(e.g. string, integer, boolean, etc.). When assigned to entities via direct assignment
(e.g. User Attribute Assignment) or groups (e.g. User Group Attribute Assignment)
they are associated with a set of values being assigned for that attribute.

– Users (U): entities that may request access on system resources through sessions.

– Objects (O): resources (files, devices, etc.) for which access may be limited.

– Operations (Op): operations that may be applied to an object (read, write, etc.).

– Policies (P): policy strings following the HGPL policy language.

– Groups (G): a hierarchical collection of users or objects to which attributes may
be assigned. Group members inherit all attributes assigned to the group and the
groups parents in the hierarchy. Defined as g = (name,m ⊆ M,p ⊆ G) where
name is the name of the group, m is the set of members, M is either the set of all
Users or all Objects, p is the groups parents and G is the set of all groups.

– Sessions: sessions allow users to activate a subset of their effective attributes. This
subset is used as the user attributes for policy evaluations. Sessions are represented
as a tuple s in the form s = (u ∈ U, a ⊆ effective(u ∈ U), con atts) where u is
the user who owns the session, con atts is the set of connection attributes for the
session and a is the set of attributes the user is activating.

– Permissions: a pairing of a policy string and an operation in the form perm =
(p ∈ P, op ∈ Op). A user may perform an operation, op, on an object if there exists
a permission that contains a policy, p, that is satisfied by the set of attributes in the
user’s session, the object being accessed and the current state of the environment.

– inherited(x): mapping of a group or user, x, to the set of all attributes inherited
from their group memberships and the group hierarchy.

– effective(x): mapping of a group or user, x, to the attribute set resulting from
merging the entities directly assigned and inherited attribute sets.

4 D. Servos and M. Bauer

P1: /user/age >= 18 AND /object/title = "Adult Book"

P2: /user/id = /object/author

P3: /policy/P1 OR /policy/P2

P4: /user/role IN "doctor", "intern", "staff" AND /user/id != /object/patient

P1 describes a policy requiring the user to be 18 or older and the title of the object to be “Adult
Book”. P2 requires the user to be the author of the document. P3 combines policies P1 and P2, such
that the policy is satisfied if either policy (P1 or P2) is satisfied. Finally, P4, requires a user’s role
to be one of “doctor”, “intern”, or “staff” and that they are not listed as the patient.

Fig. 2. Example HGABAC HGPLv2[8] policies.

The largest advantage of attribute groups is simplifying administration of ABAC
systems, allowing administrators to create user or object groups whose membership
indirectly assigns sets of attribute/value pairs to its members. The hierarchical nature
of the groups, in which child groups inherit all attributes from their parent groups, allow
for more flexible policies, administration and even emulation of traditional models such
as RBAC, MAC and DAC when combined with the HGABAC policy language.

Permissions in HGABAC take the form of operation/policy pairs, in which an oper-
ation is allowed to be performed if the policy is satisfied by the requesting user’s active
attribute set, attributes of the object being affected, the current state of the environ-
ment and a number of other attribute sources. Policies are defined in the HGABAC
Policy Language (HGPL), a C style language using ternary logic to define statements
that result in TRUE, FALSE or UNDEF. Example HGPLv2 policies are given in Fig.
2 and the full language is defined in [8]. These policies would be combined with an op-
eration to form a permission. For example the permission Perm1 = (P1, read) would
allow any user who is at least 18 years of age to read the object titled “Adult Book”
based on the permission P1 from Fig. 2. Similarly, the permission Perm2 = (P2, write)
would allow any author of an object to write to that object.

2.2 Hierarchical Group Attribute Architecture (HGAA)

While HGABAC provides an underlying model for ABAC, a supporting architecture is
still required to provide a complete system and facilitate use in real-world distributed
environments. HGAA[8] provides a system architecture and implementation details
for HGABAC that answer questions such as “who assigns the attributes?”, “how are
attributes shared with each party?”, “how does the user provide proof of attribute own-
ership?”. and “where and how are policies evaluated?” that are often left unanswered
by ABAC models alone. HGAA accomplishes this by adding five key components:

– Attribute Authority (AA): A service responsible for managing, storing and
providing user attributes by issuing attribute certificates.

– Attribute Certificate (AC): A cryptographically secured certificate listing a
user’s active attributes for an HGABAC session as well as revocation information.

– HGABAC Namespace: A URI-based namespace for uniquely identifying at-
tributes and HGABAC elements across multiple federated domains and authorities.

– Policy Authority: A service which manages and evaluates HGABAC policies
on behalf of a user service provider.

– User Service Provider: A provider of a service to end users that has restricted
access on the basis of one or more HGABAC policies (i.e. the service on which
access control is being provided).

Incorporating Off-Line Attribute Delegation into HGABAC 5

Alice Bob

Charlie

direct(Alice) =

 {(year, {4}),

 (role, {“undergrad”}),

 (department, {“CompSci”})}

direct(Bob) =

 {(role, {“faculty”}),

 (department, {“SoftEng”})}

{(department,

{“CompSci”})}

{(role, {“faculty”})}

direct(Charlie) =

 {(role, {“grad”}),

 (department, {“SoftEng”})}

effective(Charlie) =

 {(role, {“grad”, “faculty”}),

 (department, {“SoftEng”, “CompSci”})}

Fig. 3. Example of User-to-User Attribute Delegation. Arrows denote direction of del-
egation (arrow points to delegatee), boxes represent users of the system.

In a system following HGAA, users request Attribute Certificates (AC) from their
home domain’s Attribute Authority (AA) containing a list of their attributes for a ses-
sion. Users may then use this AC to make requests on protected user services (both in
their home domain or run by external organizations). These protected services verify
the user’s AC and check that the user has permission to access the service using their
local domains Policy Authority. A key feature of the architecture is the separation of
the AA from the other services. Once users are issued an AC, there is no longer a
need for the user or other parties to contact the AA for the duration of the session.
Separating services in this way simplifies the problem of user’s using their attribute
based credentials across independent organizational boundaries. Services run by exter-
nal organizations need not communicate with the user’s home organization to verify
their attributes beyond trusting the home organization’s public key used to sign ACs.

The framework presented in Sec. 4 extends the AC format to add delegation related
features. ACs are ideal for this purpose as room has been left for future extensions
including space for delegation extensions that were not part of the original work. Sec.
4 also presents a modification to the HGAA protocol to add an optional delegation
step in which users may delegate part of their certificate to another user.

2.3 Potential Delegation Strategies

In our previous work[6], we explored possible strategies for integrating delegation into
ABAC and propose several potential methods primarily based on the access control
element being delegated (e.g. attributes, group memberships, permissions, etc.). Each
family of strategies results in unique proprieties and complications to overcome. The
delegation model and architecture presented in the subsequent sections (Sec. 3 and 4)
of this paper are based on the User-to-User Attribute Delegation strategy in which
users acting as a delegator, delegate a subset of their user attributes to another user
acting as the delegatee. The delegated attributes are merged with the delegatee’s di-
rectly assigned attributes (i.e. assigned through any means but delegation) to form the
delegatee’s set of user attributes used in policy evaluations.

An example of this style of delegation is shown in Fig. 3, in which Alice (the dele-
gator) delegates a subset of their directly assigned attributes to the user Charlie (the
delegatee) such that Charlie may satisfy the policy requiring the user to be in the Com-
puter Science department (e.g. user.department = "CompSci"). At the same time, the
user Bob (a second delegator) also delegates a subset of their attributes to Charlie such
that Charlie may satisfy a policy requiring him to be a faculty member in the Soft-
ware Engineering department (e.g. user.role = "faculty" AND user.department =

"SoftEng"). In this example, both the attributes delegated by Alice (a department

6 D. Servos and M. Bauer

Alice Bob

Charlie

direct(Alice) =

 {(year, {4}),

 (role, {“undergrad”}),

 (department, {“CompSci”})}

direct(Bob) =

 {(role, {“faculty”}),

 (department, {“SoftEng”})}

{(department,

{“CompSci”})}

{(role, {“faculty”}),

 (department, {“SoftEng”})}

direct(Charlie) =

 {(role, {“grad”}),

 (department, {“SoftEng”})}

delegated(Charlie, Alice) =

 {(department, {“CompSci”})}

delegated(Charlie, Bob) =

 {(role, {“faculty”},

 (department, {“SoftEng”})}

Set 1 Set 2 Set 3

Fig. 4. Example of Isolated Attribute Delegation. Arrows denote delegation direction
and solid boxes users. Charlie may activate one set shown in dashed boxes at a time.

attribute with the value “CompSci”) and the attributes delegated by Bob (a role
attribute with the value “faculty”) are combined with Charlie’s directly assigned at-
tributes to form their effective attribute set. Note that Bob only needed to delegate the
role attribute as Charlie already had a department attribute with the value “SoftEng”.

While this style of attribute delegation may seem straightforward, our previous
investigation[6] identified a number of potential issues regarding Attribute Delegation:

Conflicting Policy Evaluations: Merging attribute sets can lead to multiple values
for an attribute. While this is an intended feature of HGABAC, it can lead to unin-
tended conflicts when the values are a result of delegation as opposed to careful design.
For example, the policy user.department 6= "SoftEng" results in two different results
for Charlie in Fig. 3 depending on the value of department used.

User Collusion: Merging attribute sets allows users to combine their attributes such
that they may satisfy policies they could not individually. In Fig. 3, Alice and Charlie
may collude to satisfy the policy user.department = "CompSci" and user.role =
"grad", if Alice delegates her department attribute such that Charlie satisfies the policy.

Loss of Attribute Meaning: A key ABAC feature is that attributes are descriptive
of their subjects and policies are created with this in mind. Merging attribute sets leads
to an effective set that is no longer descriptive of the user. In Fig. 3, it is not clear what
Charlie’s role or department is based solely on their effective attribute set. While this
makes delegation possible, it increases the difficulty of policy creation as all allowable
delegations and combinations of attributes would need to be taken into account.

To resolve these issues, the delegation model and architecture described in this
paper takes a modified approach to User-To-User Attribute Delegation in which the
attributes delegated to a delegatee from delegators are isolated and not merged with
the delegatee’s directly assigned attribute set. A delegatee may then choose to activate
either their own directly assigned attributes or their delegated attributes in a given
session but never both at the same time. An example of this approach is shown in
Fig. 4. In this example, Alice still wishes to delegate their attributes such that Charlie
may satisfy the policy user.department = "CompSci" and Bob still wishes Charlie
to satisfy the policy user.role = "faculty" AND user.department = "SoftEng". In
Alice’s case, they still only delegate their department attribute, however, now Charlie
must choose between activating the directly assigned attribute set, Set 1, or the set
delegated by Alice, Set 2. Charlie is unable to combine their own directly assigned
attributes with those delegated by Alice and must activate the delegated attributes
(Set 2) to satisfy the policy user.department = "CompSci". Note that in this case
Alice was only required to delegate a subset of their attributes to satisfy this policy.

Incorporating Off-Line Attribute Delegation into HGABAC 7

User
Attributes

Object
Attributes

Users

Objects

User
Groups

Sessions

User Group
Hierarchy

User Group
Hierarchy

User Group AssignmentUser Group Assignment

User Group
Attribute

Assignment

User Group
Attribute

Assignment

User Attribute
Assignment

User Attribute
Assignment

Attribute Activation* Attribute Activation*

User SessionUser Session

Policies Operations

Permissions

Object Attribute AssignmentObject Attribute Assignment

Object
Groups

Object
Group

Assignment

Object
Group

Assignment

Object Group
Attribute

Assignment

Object Group
Attribute

Assignment

Object Group
Hierarchy

Object Group
Hierarchy

Environment
& Admin

Attributes

Connection
Attributes

Delegated
Attribute

Set

Can
Delegate

Can
Delegate

DelegatedDelegated

DelegatorDelegator

DelegateeDelegatee

* Attribute activation is constrained to a subset of the
users effective attribute set or a subset of a single
delegated attribute set.

Delegation
Chain

Delegation
Chain

Fig. 5. User-to-User Attribute Delegation extension to the HGABAC model. Added
components are bold and black, original components are greyed out.

In the case of Bob, it is now required that both Bob’s role and department at-
tributes are delegated to Charlie. In the previous example (Fig. 3), Bob only needed
to delegate their role attribute as Charlie was already assigned a department attribute
with the value “SoftEng” and it was merged with the attributes delegated by Bob.
With the attributes sets isolated, both attributes are required as Charlie may not
merge them with his own. The policy user.role = "faculty" AND user.department

= "SoftEng" will only be satisfied when the set delegated by Bob (Set 3) is activated.
Isolation of delegated attributes avoids conflicting policy evaluations (at least those

caused by delegation) and user collusion as attributes sets are not merged. Attribute
meaning is maintained to the extent that the active attribute set will be descriptive of
either the delegatee or delegator. Issues with user comprehension, while still an open
ABAC problem[7], are abated as the delegator can be ensured that regardless of the
attributes delegated, the delegatee will not be able to satisfy any extra policy that they
themselves are not able to. It is important to note that negative policies such as role

6= "undergrad" are still problematic as a user could simply not delegate an attribute
with a restricted value. This is however a problem with negative policies in all ABAC
models that allow users to activate a subset of their attributes (such as HGABAC) and
not simply one limited to attribute delegation.

3 Delegation Model

3.1 Delegated Attribute Set

Several extensions to HGABAC model are required to support User-to-User attribute
style delegation. The most critical is the addition of the Delegated Attribute Set com-
ponent (shown in Fig. 5 with the other extensions), which contains the set of attributes
delegated to a user in addition to the rules under which the delegation is permitted.
This component is defined as follows where DAS is the set of all Delegated Attribute
Sets in the system:

∀das ∈ DAS :
das = (delegatee ∈ U, delegator ∈ U, att set, depth ∈ N≤0, rule set ⊆ P, parent ∈ DAS)

(1)

8 D. Servos and M. Bauer

where delegatee is the unique ID of the user who is the recipient of the delegation, and
delegator is the unique ID of the user who initiated the delegation. att set is the set of
attributes being delegated and their corresponding values (defined the same as attribute
sets in the HGABAC model). The att set is constrained to only containing attributes
listed in delegatable(delegator) function (as defined in Sec. 3.2). depth is a positive
integer selected by the delegator that describes how many more levels of delegation are
permitted (e.g. if the user can further delegate these attributes on to another user).
rule set is the set of policies in the HGPL policy language selected by the delegator
that must all evaluate to TRUE for the delegation to be maintained. Finally, parent is a
reference to another Delegated Attribute Set in the case of subsequent delegations (see
Sec. 3.3) or ∅ if this is the root of the delegation chain.

For example, the following Delegated Attribute Set would be created by the user
Bob to delegate their role and department attribute to Charlie as shown in Fig. 4.

del att set = (Charlie,
Bob,
{ (role, {“faculty”}),

(department, {“SoftEng”}) },
0,
{ “/environment/date < 2020− 04− 12”,

“/connection/ip = 129.100.16.66” }
∅

)

(2)

In this case, the delegation is constrained with two policies; /environment/date <

2020-04-12 revokes the delegation if the current date is past April 12th, 2020 and
/connection/ip = 129.100.16.66 only makes this delegation valid if the delegatee is
connecting from the IP address 129.100.18.66. A depth value of 0 limits the delegatee
from further delegating these attributes onto other users. A null parent (∅) indicates
that this is the first level of delegation and that Bob is first delegator in the chain.

3.2 Constraints on Delegatable Attributes

The set of attributes that may be assigned via delegation is not unlimited. There are
two major constraints placed on the attributes and values a delegator may pass on to a
delegatee. The first constraint is that delegator must have the delegated attribute and
corresponding values in their effective attribute set (i.e. the set of attributes directly
assigned to the delegator combined with those the delegator inherited from group
membership). The second constraint placed on delegatable attributes comes from the
new Can Delegate (CD) relation added to the HGABAC model (as shown in Fig.
5). The CD relation allows a system administrator to directly constrain the set of
attributes a user may delegate to a finite list and is defined as follows:

∀cd ∈CD :
cd = (delegator ∈ U, att name ⊆ {name|(name, type) ∈ UA},max depth ∈ N≤0)

(3)

where delegator is the unique ID of the user who is permitted to delegate the set of
user attributes listed in att name, a list of unique user attribute names from the set of
all user attributes (UA). max depth is a positive integer value that limits the value of
deph used in the Delegated Attribute Set such that depth ≤ max depth. A delegator
may not select a depth larger than max depth when delegating an attribute in the set
att name. A max depth of 0 would limit the attributes from being further delegated.

The attributes a delegator may delegate is defined by the delegatable function which
combines both constraints and maps a user to the set of attributes they may delegate:

Incorporating Off-Line Attribute Delegation into HGABAC 9

Bob Charlie

direct(Bob) =

 {(role, {“faculty”}),

 (department, {“SoftEng”})}

{(role, {“faculty”}),

 (department, {“SoftEng”})}

Dave

{(department, {“SoftEng”})}

Erin

Fig. 6. Example delegation chain. Bob delegates a role and department attribute to
Charlie, who delegates the department attribute on to Dave and role attribute to Erin.

delegatable(u) = {att name|(att name, values) ∈ effective(u)
∧ att name ∈ att set
∧ (u, att set, depth) ∈ CD}

(4)

where u is the ID of the delegator and effective(u) is the delegator’s effective attributes
set as defined by HGABAC. The result is an attribute only being delegatable if it is
both assigned to the delegator normally (through User Attribute Assignment or User
Group Attribute Assignment) and explicitly permitted via the Can Delegate relation.

3.3 Subsequent Delegations & Delegation Chains

In addition to the attributes listed in delegatable(u), users may also further delegate
attribute sets they have been delegated so long as the maximum depth has not been
reached. If a user, u, wishes to delegate a set of attributes they have been delegated,
dasold ∈ DAS , they create a new Delegated Attribute Set, dasnew, such that:

dasnew = (delegatee ∈ U,
u,
att setnew ⊆ dasold.att set,
depth < dasold.depth,
rule setnew ⊇ dasold.rule set,
dasold

)

(5)

That is dasnew must contain the same or a subset of the attributes of dasold, must have
a depth less than the depth listed in dasold, must have a rule set that is more restrictive
than dasold (i.e. must contain the same rules plus optionally any additional rules) and
must list dasold as the parent. These conditions ensure that subsequent delegations in
a delegation chain are always more restrictive than their parents, the maximum depth
is maintained and that attribute sets remain isolated.

An example delegation chain is shown in Fig. 6. In this case, the user Bob is
delegating his role attribute with the value “faculty” and department attribute with
the value “SoftEng” to the user Charlie. This is the same delegation as discussed in
Sec. 3.1 and Bob creates the same DAS as shown in Equation 2 but with a depth of at
least 1. This DAS is referred to as dasC . The key difference is that Charlie now further
delegates a subset of these attributes on to Dave and Erin. In the case of Dave, Charlie
delegates just the department attribute and in the case of Erin, only the role attribute.
To accomplish this, the following DASs are created, dasD for Dave and dasE for Erin:

dasD = (
Dave,
Charlie,
{(department, {“SoftEng”})},
0,
{“/environment/date < 2020− 04− 12”,
“/connection/ip = 129.100.16.66”
“/user/age >= 18”},
dasC

)

(6)

dasE = (
Erin,
Charlie,
{(role, {“Faculty”})},
0,
{“/environment/date < 2020− 04− 12”,
“/connection/ip = 129.100.16.66”
“/environment/date < 2020− 04− 01”},
dasC

)

(7)

10 D. Servos and M. Bauer

dasD delegates the department attribute to Dave, but also adds in a new constraint
on the delegation, /user/age >= 18, which requires that the user of this attribute set
must have an age attribute in their effective attribute set (effective(u)) with a value
equal to or greater than 18 for this delegation to be valid. All other constrains from
dasC are present in dasD as required by Equation 5. If the depth in dasC was greater
than 0, and Dave further delegated this attribute set on to another user, the /user/age

>= 18 constraint would have to be maintained, requiring all future delegatees in the
chain to also be 18 years or older to use the delegated attributes.

The dasE set delegates the role attribute to Erin, but also adds an additional
constraint of /environment/date < 2020-04-01 which invalidates the delegation after
April 1st, 2020. It is important to note that this does not conflict with the existing rule,
/environment/date < 2020-04-12, from the parent set, dasC , but further constrains
it as all policy rules must evaluate to TRUE for the delegation to be valid. In this way,
subsequent delegators may tighten constrains on delegations but not loosen them.

Cycles in the delegation chain are permitted but not useful as each child in the chain
must have the same or stricter constraints. The impact of such cycles is negligible as
delegated attributes are isolated from each other and the user’s effective attribute set
as only one such set may be activated in a given session as discussed in Sec. 3.4. Cycles
are prevented from being infinite in length as the depth of each set in the chain must
be less than that of the parent and eventually reach 0, preventing further delegation.

3.4 Sessions & Attribute Activation

An important feature of the proposed User-to-User Attribute Delegation model is
the isolation of delegated attributes from the user’s effective set of attributes as well
from other delegated attribute sets. This is accomplished through a modification of
HGABAC’s session definition. In the original HGABAC model, sessions are defined as
a tuple of the form s = (u ∈ U, att set ⊆ effective(u), con atts) where u is the user the
session belongs to, att set is the subset of the user’s effective attributes being activated
for this session and con atts is the set of connection attributes that describe this session
(e.g. IP address, time the session was started, etc.). To support delegation, we update
the definition of a session to the following:

s = (u ∈ U,
att seteffective ⊆ effective(u) ∨ att setdelegated ∈ { del att set |

das ∈ DAS ∧ das = (u, delegator , del att set, depth, rule set, parent)},
con atts)

(8)

Or more simply put, the activated attribute set in a session may now be one of
att seteffective or att setdelegated where att seteffective is any subset of the user’s effective
attribute set (as per the original HGABAC session definition) and att setdelegated is
one of the delegated attribute sets delegated to the user via the new Delegated Attribute
Set component. This limits users to either using their normally assigned attributes or
one of their delegated attributes sets at a time, eliminating or vastly reducing the
issues discussed in Sec. 2.2 related to merging delegated attribute sets.

3.5 Revocation

An important feature of the HGAA architecture is maintaining a separation between
the Attribute Authorities (AA) which grant attributes to users (via Attribute Cer-
tificates (AC)), and the Policy Enforcement Points and Policy Decision Points. This
separation provides an important advantage in distributed and federated systems as

Incorporating Off-Line Attribute Delegation into HGABAC 11

no communication is required between the AAs and the services their attributes grant
access to beyond a user passing on their AC. This, however, raises a number of issues
when it comes to revocation. As direct communication between the AAs and other
services is optional, an AA’s (and by extension it’s user’s) ability to revoke delegated
attributes is limited to the predefined delegation rules in the rule set component of the
DAS. As is shown in the example DASs (in Equations 2, 6 and 7) these rules may be
any valid HGPL policy. If all policies evaluate to TRUE the delegation is valid, if the
result is FALSE or UNDEF it is considered to be revoked.

In cases of delegation chains (as shown in Fig. 6), if any policy in a rule set is
invalidated all subsequent delegations in the chain are also revoked. This is in part a
consequence of all rule sets in subsequent delegations being required to be a superset of
the parent rule set as is stated in Equation 5 (i.e. they must contain at least all policies
in the parent rule set), but it is further required that each user in the chain satisfies
the policies in their own rule set. For example, if the policy /user/age >= 18 is made
a condition of a delegation from Bob to Charlie and Charlie subsequently delegates the
attributes on to Dave, both Charlie and Dave must have their own age attribute that
has a value of 18 or greater. The value of environment and administrator attributes are
determined based on their current value at the Policy Decision Point. As the value of
connection attributes for parents in the delegation chain may be unknown or undefined,
how they are evaluated is left as an implementation decision (i.e. conditions involving
connection attributes of parent users can be assumed to be TRUE, UNDEF, based on
the last known values, or based on their values at the time of delegation).

Formally, we define the recursive function active which takes a Delegatable At-
tribute Set, das, and returns TRUE if the delegation is active (not revoked) and FALSE
if the delegation is considered to be revoked.

active(das) =



active(dasparent) if das.parent 6= ∅∧
das.depth < das.parent.depth∧
das.depth ≥ 0∧
das.att set ⊆ delegatable(das.delegator)∧
das.rule set ⊇ das.parent.rule set∧
∀rule ∈ das.rule set : valid(rule, das.delegatee) = TRUE

dasatt set ⊆ delegatable(das.delegator) if das.parent = ∅∧
∀rule ∈ das.rule set : valid(rule, das.delegatee) = TRUE

(9)

where valid is a HGABAC function which takes an HGPL policy and a user and returns
TRUE if the user satisfies that policy for the current value of that user’s attributes
(including connection attributes) and the current state of the system (environment
attributes and administrator attributes), FALSE if the policy is violated and UNDEF
if the policy cannot currently be evaluated.

A secondary means of revocation is possible through HGAA’s optional AC revo-
cation lists. In HGAA, each AA may publish a revocation list that includes the serial
number of any revoked AC issued by the authority. Policy Decision Points may option-
ally request this list either on demand or periodically depending on the nature of their
service and if communication with the AA is possible. In the delegation framework de-
tailed in the next section (Sec. 4), DAS are represented as special Delegated Attribute
Certificates (DAC). These DACs may be revoked by the same mechanism. If a revoked
DAC is part of a delegation chain, all subsequent delegations are also revoked.

12 D. Servos and M. Bauer

User Service
Provider

Protected User
Service

Object Attribute
Database

User Service
Provider

Protected User
Service

Object Attribute
Database

Policy Authority

Policy Database

Static Environment
& Admin Attribute

Database

Policy Authority

Policy Database

Static Environment
& Admin Attribute

Database

Attribute Authority

User Attribute
Database

Attribute Authority

User Attribute
Database

Delegator

Attribute Store
Service

Policy Decision Point
Service

Policy
Administration Point

Service

Attribute
Administration Point

Service

PRP

PIP

PIP

PEP

PIP

PDP

PAP

5. Session Start:
DAC + all AC’s in cert. chain

9. Session ID & Expiry Date

10. Session ID, User Service
Request & Signature

6
. C

re
at

e
 S

es
si

on
:

A
ll

AC
’s

 in
 c

h
ai

n
, D

A
C

&

Se
rv

ic
e

ID

12. Retrieve
Relevant

Attributes

14. Request Result

PIP

8
. S

es
si

on
 I

D
 &

 E
xp

ir
y

Da
te

1
1

. P
o

lic
y

Ev
al

u
at

io
n

 R
eq

ue
st

:
Se

ss
io

n
ID

, P
ol

ic
y

ID
 &

 O
bj

ec
t

A
tt

ri
bu

te
/V

al
u

e
Se

t

1
3

. E
va

lu
at

io
n

R
e

su
lt

:
TR

U
E,

 F
A

LS
E

or
 U

N
D

EF

11. Relevant
Object Attributes

7. Generate Session ID & Save
Attribute Certificates Locally

Delegatee

4. Delegated Attribute Certificate (DAC)
&

Delegator’s Attribute Certificate

Fig. 7. Updated HGAA protocol to support delegation step. New and modified com-
ponents shown in bold dark black, pre-existing HGAA components shown in light grey.

4 Delegation Framework

The proceeding section (Sec. 3) laid out the theoretical delegation model and extensions
to HGABAC to incorporate User-To-User Attribute Delegation. This section seeks to
provide more practical details for how this delegation model may be implemented by
extending HGAA to create a supporting delegation framework. Two key aspects of
HGAA need to be expanded; the Attribute Certificate (AC) format to include delega-
tion extensions and rules (detailed in Sec. 4.2), and the communication steps between
users and services to provide a full certificate chain (detailed in Sec. 4.1).

4.1 Protocol Additions

In HGAA, users are issued an AC from an AA’s Attribute Store Service. This document
provides proof of a user’s attributes in a cryptographically signed document as well as
providing a mechanism for single sign-on and authentication with remote services. The
AC format includes a listing of the user’s attributes, details of the issuing authority, a
public key assigned to the user, a range of dates for which the certificate is valid and
a number of areas reserved for future extensions. User’s prove ownership of an AC via
a private key corresponding to the public key embedded in the AC. As the certificate
is signed and contains all information about the user to base policy decision on, direct
communication between the service being accessed and the AA is not required.

In the original architecture, after being issued an AC, users use the certificate
to make requests on services. To support delegation, an additional delegation step is
needed (as shown in Fig. 7 as step 4). Rather than directly querying services, a user
may now delegate all or a subset of the attributes in their AC to a third party by issuing
a new AC called a Delegated Attribute Certificate (DAC). The DAC is identical to an
AC issued by an AA but lists the delegator as the issuer and signer (rather than an
AA), and the delegatee as the holder. The extensions to the AC format to support
DACs and delegation, detailed in Sec. 4.2, enable the delegator to include delegation
rules to trigger revocation (as discussed in Sec. 3.5), set a maximum delegation depth
for subsequent delegations and select what subset of the attributes in their AC will be
contained in the DAC (and delegated to the delegatee).

Incorporating Off-Line Attribute Delegation into HGABAC 13

To complete the delegation, the delegator sends their AC and the new DAC to the
delegatee. The delegatee validates both by checking the following:

1. The original components of the AC are valid as described in [5] (i.e. correctly
signed by the AA, that the AC has not expired, etc.)

2. The ACHolder from the AC is the ACIssuer in the DAC (same UID, key, etc.).

3. The ACHolder given in the DAC is the delegatee (correct UID, public key, etc.).

4. All attributes listed in the DAC are also found in the AC and have a maxDepth
greater than zero in the AC.

5. All attributes in the DAC have the delegator listed as the delegator and a
maxDepth less than or equal to the maxDepth in the DAC for that attribute.

6. The ACRevocationRules in the DAC are the same or stricter than in the AC.

7. The ACDelegationRules in the DAC are the same or stricter than in the AC.

8. The overall delegation depth in the DAC is less than the delegation depth in
the AC and greater than or equal to 0.

9. That the delegation has not been revoked (i.e. all delegation rules return TRUE).

10. The DAC is signed by the delegator with the public key listed in the ACHolder
sequence of the AC and the ACIssuer sequence of the DAC.

These checks enforce the rules on DASs described in Sec. 3.1 and ensure the delegation
has not been revoked (as per Sec. 3.5). If the AC and DAC are valid, the delegatee
may make requests upon services by sending both the AC and DAC with their request.
The remainder of the HGAA protocol remains the same, but with the DAC being sent
with the AC in steps 5 and 6 (Fig. 7). The Policy Decision Point also makes the same
checks (as listed above) on the DAC when validating the deletagee’s attributes.

Subsequent delegations by the delegatee, to further delegatees, are supported. In
such cases, the delegatee becomes the delegator and issues a new DAC using the pro-
cesses previously described (their existing DAC becoming the AC and they become the
issuer of the new DAC). This creates a chain of certificates leading back to the AA,
each certificate being signed by the parent delegator. This process is shown in the Low
Level Certificate Chain Diagram found in Appx. A. To allow services and the Policy
Decision Point to verify subsequent delegations, each certificate in the chain is included
with the first request upon a service and each certificate is validated.

4.2 Attribute Certificate Delegation Extensions

To incorporate our delegation model and updated HGAA protocol, several extensions
to the AC format are required (described in Listing 1.1). The Attribute sequence is
extended to include a maxDepth and delegatorUniqueIdentifier value for each attribute
in the certificate. delegatorUniqueIdentifier states the ID of the original delegator (first
in the chain) of the attribute or no value if not delegated. maxDepth corresponds to the
Can Delegate relation (defined in Sec. 3.2) and has a value equal to 0 if this attribute
cannot be delegated, 255 if there is no limit on the delegation depth or some value
between 1 and 254 equal to the maximum depth allowed for this specific attribute.

Delegation rules from the DAS (defined in Sec. 3.1) are encoded in a new DACDel-
egationRule sequence which contains a HGPLv2 policy for each rule. The depth value
from the DAS is included in a new instance of the ACExtension sequence in addition
to a record of the original AA and the serial number of each certificate in the chain.

14 D. Servos and M. Bauer

Listing 1.1. Updates to the AC format to support Atrtibute Delegation writen in
ASN.1 notation. Bold text indicate addtions. Only updated sequences are shown.

Attr ibute : := SEQUENCE {
at t r ibute ID OBJECT IDENTIFIER ,
attr ibuteType OBJECT IDENTIFIER ,
at t r ibuteVa lue ANY DEFINED BY attr ibuteType OPTIONAL,
attributeName V i s i b l e S t r i n g OPTIONAL,
maxDepth INTEGER(0..255),
delegatorUniqueIdentifier OBJECT IDENTIFIER OPTIONAL,

}

ACDelegationRules : := SEQUENCE {
SEQUENCE OF DACDelegationRule

}

DACDelegationRule ::= SEQUENCE {
HGPLv2Policy VisibleString

}

– One instance of ACExtension with the following values
UToUAttDelv1 ACExtension ::= SEQUENCE {

extensionID ”ext:UToUAttDelv1”,
depth INTEGER(0..254),
rootAuthorityUniqueIdentifier OBJECT IDENTIFIER,
SEQUENCE OF DACCertificateSerial

}

DACCertificateSerial ::= SEQUENCE {
certificateSerial INTEGER

}

The extended AC is kept backwards compatible with the original AC format by only
updating sections marked for future extension. The changes have a minimal impact on
the certificate size, adding at worst 3+U bytes per attribute (where U is the size of the
largest delegator ID), 2 ∗P bytes per delegation rule (where P is the maximum length
of a HGPL policy), and 1 + S bytes per certificate in the chain (where S is the serial
number size in bytes). A byte level representation of the new AC is found in Appx. B.

5 Conclusions & Future Work
We have introduced the first model of User-to-User Attribute Delegation as well as
a supporting architecture to aid implementation. Extensions to the HGABAC model
(Sec. 3) add relations for authorizing what attributes can be delegated (Can Delegate)
and to what depth. A new access control element, the Delegated Attribute Set, is added
for representing current delegations in the system and the restrictions placed on them.
Delegated attributes are kept isolated to prevent issues with Attribute Delegation,
including user collusion and unexpected side effects on policy evaluations.

Updates to the HGAA protocol and AC format have been made (Sec. 4) to support
the extended HGABAC model. These changes to the AC format are minimal in size,
scaling with the number of attributes, delegation rules, and certificates in the chain. As
changes have only been made to sequences marked for future expansion, the extended
AC format remains backwards compatible with the original HGAA AC. Care has been
given to ensure that delegation is preformed in an “off-line” manner, without the need
to contact a third party, to maintain the distributed nature of HGABAC and HGAA.
However, support for “off-line” delegation comes at the cost of revocation flexibility
and limits the possibility for real time revocation invoked by the delegator. To combat
this, HGPL policies are used to embed delegation rules that trigger revocation.

This work is part of an ongoing effort towards introducing delegation to ABAC and
directions for future work will follow this path. To date, models for User-To-User At-
tribute and User-to-Attribute Group Membership [4] Delegation have been completed.
The next steps will involve creating models for and implementing the remaining strate-
gies so they can be fully explored, validated, evaluated and compared. Directions for

Incorporating Off-Line Attribute Delegation into HGABAC 15

the User-To-User Attribute Delegation model include exploring the use of a “Can Re-
ceive” relation for users in place of “Can Delegate” for attributes and experimenting
with adding constraints that prevent specified users form being delegated a restricted
attribute (e.g. to prevent certain users from stratifying a policy via delegation). Such
“Can Receive” relations have been used in RBAC models[2] and were shown to add
flexibility. Work is needed to see if the same will hold true for ABAC. Finally, a more
thorough evaluation of our delegation model is planned that will involve both formal
validation (safety analysis) and experimental evaluation (reference implementation).

References

1. Anderson, A., Nadalin, A., Parducci, B., et al.: eXtensible Access Control Markup
Language (XACML) Version 1.0. OASIS (2003)

2. Crampton, J., Khambhammettu, H.: Delegation in role-based access control. Inter-
national Journal of Information Security 7(2), 123–136 (2008)

3. Rostad, L., Edsberg, O.: A study of access control requirements for healthcare sys-
tems based on audit trails from access logs. In: 22nd Annual Computer Security
Applications Conference (ACSAC’06). pp. 175–186. IEEE (2006)

4. Sabahein, K., Reithel, B., Wang, F.: Incorporating delegation into ABAC: Health-
care information system use case. In: Proceedings of the International Conference
on Security and Management (SAM). pp. 291–297 (2018)

5. Servos, D., Osborn, S.L.: HGABAC: Towards a formal model of hierarchical
attribute-based access control. In: International Symposium on Foundations and
Practice of Security. pp. 187–204. Springer (2014)

6. Servos, D., Osborn, S.L.: Strategies for incorporating delegation into attribute-based
access control (ABAC). In: International Symposium on Foundations and Practice
of Security. pp. 320–328. Springer (2016)

7. Servos, D., Osborn, S.L.: Current research and open problems in attribute-based
access control. ACM Computing Surveys (CSUR) 49(4), 65 (2017)

8. Servos, D., Osborn, S.L.: HGAA: An architecture to support hierarchical group and
attribute-based access control. In: Proceedings of the Third ACM Workshop on
Attribute-Based Access Control. pp. 1–12 (2018)

9. Wang, L., Wijesekera, D., Jajodia, S.: A logic-based framework for attribute based
access control. In: Proceedings of the 2004 ACM workshop on Formal methods in
security engineering. pp. 45–55 (2004)

A Low Level Certificate Chain Diagram

Superset or same
delegation rules

Subset or
same attributes

Superset or same
delegation rules

Subset or
same attributes

Attribute Certificate

ACInformation

ACIssuer

ACHolder

Attribute Attribute

ACRevocationRules

ACDelegationRules

Extension Extension

ACSignature

NA
Attributes

NE
Extensions

NA

NE

Delegated Attribute Certificate #1

ACInformation

ACIssuer

ACHolder

Attribute Attribute

ACRevocationRules

ACDelegationRules

Othe r
Extension

Othe r
Extension

ACSignature

NA
Attributes

NE - 1 Extensions

NA

NE
User-to-User Attribute
Delegation Extension

Issues first
certificate to

ACHolder

Authority is
ACIssuer

Signs
first

certificate

Delegated certificate is
signed by ACHolder (delegator)

Delegated
certificate is

signed by ACHolder
(delegator)

Serial included in
certificate chain

Root
Attribute
Authority

Serial included in
certificate chain

Delegated Attribute Certificate #2

ACInformation

ACIssuer

ACHolder

Attribute Attribute

ACRevocationRules

ACDelegationRules

Othe r
Extension

Othe r
Extension

ACSignature

NA
Attributes

NE - 1 Extensions

NA

NE
User-to-User Attribute
Delegation Extension

16 D. Servos and M. Bauer

B Low Level Extended Attribute Certificate Diagram

For Delegated Attribute Certificates the issuer is the
delegator and their UID would be placed here.

Attribute Certificate (AC) / Delegated Attribute Certificate (DAC)

ACInformation+

ACIssuer

ACHolder+

Attribute Attribute

ACRevocationRules+

ACDelegationRules

Extension Extension

ACSignature+

C
er

ti
fic

at
e

B
o

dy

[P
ar

t
th

at
 is

 s
ig

ne
d

]

NA Attributes

NE Extensions

Number of
Attributes

(NA)

Number of
Extensions

(NE)

Key Algorithm
Public Key

[Format Based on
Key Algorithm]

Issuer UID
Issuer Name

[OPTIONAL]

Service URL
[OPTIONAL]

Public Key Size
(PK)

Key Algorithm
Size (KA)

Issuer UID Size
(UID)

Issuer Name Size
(N)

Service URL Size
(U)

2 Bytes

PK Bytes KA Bytes UID Bytes N Bytes U Bytes

ACIssuer

Attribute

Attribute ID Size
(ID)

Attribute Value
Size (V)

Attribute Name
Size (N)

Extension Size
(E)

2 Bytes

Attr.
Type

1 Byte

Attribute ID
Extension

[Format Based on Extension,
OPTIONAL]

Attribute Value
[String Encoded,

OPTIONAL]

Attribute Name
[OPTIONAL]

ID Bytes V Bytes N Bytes E Bytes

Extension
[Format Based on Extension, OPTIONAL]

Extension ID

ID Bytes

Extension
[Format Based on Extension, OPTIONAL]

ACDelegationRules

Extension Size
(E)

2 Bytes E Bytes

ACExtension

Extension ID
Size (ID)

Extension Size
(E)

2 Bytes E Bytes

B
unsigned char

1 Byte
Little-Endian

variable length
bytes

I
unsigned int

4 Bytes
Little-Endian

H
unsigned short

2 Bytes
Little-Endian

s
variable length

string
utf-8

Little-Endian

Legend

Defined by
Subsection

Mandatory Part
(Solid Fill)

Optional Part
(Pattern Fill)

E Bytes

Delegator UID Size
(DID)

Delegator UID
[OPTIONAL]

1 Byte 2 Bytes
DID Bytes

Number of Rules
(R)

Delegation
Rule

Delegation
Rule

R Rules

2 Bytes

DACDelegationRule

Policy Size (P)

2 Bytes

HGPLv2 Policy

P Bytes

Updated and
New

Components
for User-to-

User Attribute
Delegation

Literal String:
"ext:UToUAttDelv1"

ID Bytes

16 Bytes

1 Byte

Root Authority ID Size
(AuthID)

2 Bytes

Root Authority ID

AuthID Bytes

Number of Certificates in
Chain (C)

Certificate
Serial

Certificate
SerialC Serials

Serial Size
(S)

1 Byte

2 Bytes

Serial
[Little-Endian Encoded

Number]

S Bytes

DACCertificateSerial

+ Unchanged

components from
the original AC
format are not
shown in detail.

For Delegated Attribute
Certificates the Service URL (if

provided) is for the Root
Attribute Authority

Value of 0 if there is no delegator UID
provided (e.g. if this attribute is not
delegated).

Value of 0 if attribute can not be delegated,
value of 255 if no limit on depth, otherwise
value is original max depth.

Can Delegate
& Max Depth

Each Delegated Attribute Certificate should have exactly one instance of ACExtension with these values.

Depth

In order from
Root Authority
to current
certificate.

Delegator

Delegator

Delegatee

Signed by ACIssuer’s private key

