
Strategies for Incorporating Delegation into
Attribute-Based Access Control (ABAC)

Daniel Servos and Sylvia L. Osborn

The University of Western Ontario
London, Ontario, Canada, N6A 5B7

dservos5@uwo.ca, sylvia@csd.uwo.ca

Abstract. Attribute-Based Access Control (ABAC) is an emerging model
of access control that has gained significant interest in both recent aca-
demic literature and industry application. However, to date there have
been almost no attempts to incorporate the concept of dynamic delega-
tion into ABAC. This work lays out a number of possible strategies for
incorporating delegation into existing ABAC models and discusses the
potential trade-offs associated with each strategy. Delegation strategies
are categorized into families that share a number of similar properties.
It is our hope that this preliminary work will aid in future ABAC based
delegation research by identifying and detailing the challenges and op-
portunities intrinsic to each method of integrating delegation.

1 Introduction

Attribute-Based Access Control (ABAC) is a relatively new form of access con-
trol that bases access control decisions on the attributes of users, objects and the
environment rather than the identity of users or the roles/clearances assigned to
them. While there has been significant interest in the creation, enforcement and
application of ABAC models[5, 7], to date there are few works that address how
delegation might be implemented or supported.

Delegation enables a user to temporarily and dynamically alter the design
of an access control system after policies have been created to account for ev-
eryday changes that policies are insufficient to address. In traditional models
of access control delegation is relatively straightforward. A set of permissions
or a role membership is delegated directly by a delegator to a delegatee under
set conditions (e.g. an expiry date). In ABAC, this is complicated by both the
introduction of attributes and ABAC’s identity-less nature (i.e. access decisions
are made on the basis of attributes and the user’s identity may be unknown).
Attributes may seem like an ideal access control element to build delegation
around (as is done in ABE[2, 6] and Attribute Certificates[8]); however, as we
will show, this naive approach comes with a number of unexpected challenges.

This paper offers a preliminarily investigation into strategies for incorporat-
ing delegation into ABAC. Potential strategies are created by evaluating the
combinations of delegators, delegatable access control elements and delegatees
common in most ABAC models (Sect. 2.1). The trade-offs associated with each

family of strategies are discussed and multiple examples are given that demon-
strate how delegation might be performed (Sect. 2.2). Finally, we give conclusions
and outline directions for future work (Sect. 3). It is our hope that this work will
aid future research by identifying possible strategies for the creation of ABAC
delegation models as well as the challenges and benefits associated with them.

2 Strategies for Incorporating Delegation in ABAC

2.1 Delegation Components

Delegation can be thought of as relating three access control components; a
delegator, a delegatee and a delegatable access control element. A delegator
temporarily grants a delegatee an access control element (e.g. a set of permis-
sions or role membership) under set constraints. In RBAC delegation models,
this is relatively straightforward: the delegator and delegatee are typically users
and the access control element being delegated is either a set of permissions
(via a temporary role)[9] or membership in an existing role[1]. ABAC, how-
ever, presents new possibilities for delegators, delegatees and delegatable ele-
ments that result in different trade-offs and limitations when combined. Each
combination provides a conceivable strategy for delegation and offers particular
advantages/disadvantages if used as the basis for an ABAC delegation model.

Delegatable elements are the most important characteristic of delegation as
they answer what is being delegated, while the delegators and delegatees answer
who and where (i.e. who is doing the delegating and where the elements are
being delegated to). The following are the most suitable delegatable elements
that we have identified in current ABAC models[5, 7, etc.]:

Attributes: Perhaps the most obvious element and one that has been explored
to a limited extent (in ABE[2, 6] and Attribute Certificates[8]) are user at-
tributes. In cases where attributes are delegatable, users are allowed to delegate
their assigned attributes to a delegatee such that they are considered to be part
of the delegatee’s attribute set.
Permissions: Delegating permissions a delegator has obtained from a policy
decision is another option. In such cases users are granted permissions as a result
of their attribute set satisfying a policy and can delegate these permissions onto
others while the policy remains satisfied.
Group Membership: Recent ABAC models have incorporated the concept of
user groups into the core ABAC model. In HGABAC[7], groups can be directly
assigned user attributes that are inherited by users through their membership.
Membership in these groups provides a possible delegatable element, similar to
how role membership is delegatable in some RBAC delegation models[1].

While traditional models focus on delegation between users, additional pos-
sibilities exist for ABAC. In ABAC models with group support, user groups can
be delegators in the sense that attributes or other delegatable elements assigned
to groups may be temporarily delegated to a delegatee. In such a case, while the
group is the source of the delegatable elements, the actual instigator of the dele-
gation would be the members of the group or another actor in the system (e.g. a

Table 1. Delegation Strategies

Strategy Name X DEY
Attribute Delegation
User-to-User Attribute Delegation U AS U
User-to-Group Attribute Delegation U AS G
Group-to-Group Attribute Delegation G AS G
Group-to-User Attribute Delegation G AS U
User-to-Attribute Attribute Del. U AS A
Group-to-Attribute Attribute Del. G AS A
User-to-Policy Attribute Delegation U AS P
Group-to-Policy Attribute Delegation G AS P
Group Membership Delegation
User-to-User Membership Delegation U GMU
Group-to-User Membership Del. G GMU
Group-to-Group Membership Del. G GMG
User-to-Group Membership Del. U GMG
User-to-Attribute Membership Del. U GMA
Group-to-Attribute Membership Del. G GMA
User-to-Policy Membership Delegation U GMP
Group-to-Policy Membership Del. G GMP

Strategy Name X DEY
Permission Delegation
User-to-User Permission Delegation U PS U
User-to-Group Permission Delegation U PS G
Group-to-User Permission Delegation G PS U
Group-to-Group Permission Del. G PS G
User-to-Attribute Permission Del. U PS A
Group-to-Attribute Permission Del. U PS A
User-to-Policy Permission Delegation U PS P
Group-to-Policy Permission Del. G PS P
Legend
U = User X = Delegator
G = Group DE = Delegatable Element
P = Policy Y = Delegatee
A = Attribute
PS = Policy Set
AS = Attribute Set
GM = Group Membership

group leader). Similarly, the delegatee need not be limited to a user. Delegating
to a group allows a delegator to assign their delegatable elements to multiple
users in one operation. This is useful in scenarios where multiple users are briefly
required to take on the duties of a single delegator (e.g. an absent store manager
delegating his permissions to all department managers). In cases where group
membership is being delegated, it can be considered that all members in the
delegatee group are also temporarily made members of the delegated group.

Delegations can also be made to a policy or attribute. When an attribute
is acting as a delegatee, all users that are directly (not through delegation)
assigned the same attribute also become delegatees. For example if a permission,
P, is delegated to the attribute (ROLE, {manager}) (an attribute named ROLE
with the value “manager”) all users that are assigned the attribute ROLE with
a value of “manager” will be delegated the permission P. Using a policy as a
delegatee works similarly. A delegator delegates some element to a policy they
create and all users satisfying this policy are delegated the element. For example,
if membership in a group, G, is delegated to the policy “ROLE = manager AND
YEARS EMPLOYED ≥ 3 ”, users that have attributes stating that they are
managers and employed for at least 3 years will be delegated membership in
group G. While delegating to an attribute or policy may seem complex, it is a
necessity to support delegation in a system where the identity of a user may
remain unknown and access decisions are made purely on the user’s attributes.

2.2 Delegation Strategies

Each delegation components described in Sect. 2.1 may be combined to create a
delegation strategy. For example the combination (Users, Permissions, Users)
represents a strategy in which users can delegate their permissions to other users,
whereas (Groups, Attributes, Policies) would be a strategy in which groups can
delegate their attributes to any user that satisfies a policy. Table 1 categorizes
each strategy into families based on the element being delegated. Strategies in
the same family tend to share common characteristics and challenges for systems
adopting them. In this section, we discuss the advantages and limitations of each
family. It is assumed that only one strategy is used at a time. While hybrid
strategies are possible, and could offer advantages, they are left to future work.

Attribute Delegation In Attribute Delegation strategies, delegatees are del-
egated a subset of the delegator’s attributes. Delegated attributes are merged
with the delegatee’s directly assigned attributes (i.e. assigned through any means
but delegation) and the combined attribute set is treated as the delegatee’s set
during policy evaluation. An example of User-to-User Attribute Delegation is
shown in Fig. 1 where direct(user) is the user’s directly assigned attributes and
effective(user) is the user’s effective attributes (i.e. the merged attribute set
used for policy evaluations). In Fig. 1, Alice wants to delegate a subset of her
attributes to a prospective student (Dave) so he can satisfy the policy “role =
“undergrad” AND year ≥ 2” to view some resource. As Dave only has the value
“ProspectiveStudent” for his role attribute and no year attribute, Alice must del-
egate both her role and year attributes for Dave to satisfy the policy. The subset
Alice delegates is {(year, {4}), (role, {“undergrad”})} which makes Dave’s ef-
fective attribute set {(role, {“ProspectiveStudent”, “undergrad”)}, (year, {4})}.

Multiple simultaneous delegations to a single user are also possible. In Fig.1,
Alice wishes to delegate to Charlie so he can satisfy the policy “role IN { “un-
dergrad”, “grad”} AND department = “CompSci””, and access a resource lim-
ited to CompSci students. At the same time, Bob wishes to delegate to Charlie
so he can satisfy the policy “role = “faculty” AND department = “SoftEng””
and access a resource limited to SoftEng faculty. Alice delegates {(department,
{“CompSci”})} and Bob {(role, {“faculty”})}. Making Charlie’s effective at-
tributes {(role, {“grad”, “faculty”}), (department, {“SoftEng”, “CompSci”})}.

While this style of delegation is easy to implement (a subject’s effective at-
tribute set is simply used in place of their direct set), it can lead to serious
problems if not carefully constrained. The first issue is the creation of conflict-
ing policy evaluations. In Fig. 1 Alice’s delegation results in Dave’s effective
attribute set containing two values for the role attribute, “ProspectiveStudent”
and “undergrad”. If a policy were to exist such as “role 6= “ProspectiveStudent””
two different results would be possible depending on the value of role used when
evaluating the policy. A potential solution is to use a policy language that speci-
fies clear resolutions to conflicts (e.g. prioritize attributes assigned via delegation
over those directly assigned or always grant access when any combination of at-
tributes satisfies the policy). However, the issue is further complicated when

Alice Bob

Dave Charlie

direct(Alice) =

 {(year, {4}),

 (role, { undergrad }),

 (department, { CompSci })}

direct(Bob) =

 {(role, { faculty }),

 (department, { SoftEng })}

{(department,

{ CompSci })}

{(role, { faculty })}

{(year, {4}),

 (role, { undergrad })}

direct(Dave) =

 {(role, { ProspectiveStudent })}

effective(Dave) =

 {(role, { ProspectiveStudent ,

 undergrad)},

 (year, {4})}

direct(Charlie) =

 {(role, { grad }),

 (department, { SoftEng })}

effective(Charlie) =

 {(role, { grad , faculty }),

 (department, { SoftEng , CompSci })}

 Fig. 1. Example of User-to-User Attribute Delegation. Arrows denote direction of del-
egation (arrow points to delegatee), boxes represent users of the system.

Oscar Mallory

direct(Oscar) =

 {(year, {4}),

 (department, { CompSci })}

direct(Mallory) =

 {(year, {1}),

 (department, { SoftEng })}

effective(Mallory) =

 {(year, {1, 4}),

 (department, { SoftEng })}

{(year, {4})}

Fig. 2. Example of a possible attack on User-to-User Attribute Delegation.

multiple delegations to the same delegatee are considered simultaneously. In
such cases, conflicts can arise from purely delegated attributes, making conflict
handling more difficult (e.g. can not simply prioritize delegated attributes).

A second issue is the potential for users to collude to satisfy a policy that they
would individually be unable to. In Fig. 2 Oscar and Mallory are trying to satisfy
the policy “year > 2 AND department = “SoftEng””. Individually, neither can
satisfy the policy as Oscar lacks a department attribute with a “SoftEng” value
and Mallory lacks a year attribute with a value greater than 2. However, if Oscar
delegates {“year”, {4}} to Mallory it creates the effective attribute set {(year,
{1, 4}), (department, {“SoftEng”})} and Mallory can satisfy the policy if year
is evaluated as 4. While one solution is to heavily constrain what attributes can
be delegated or to use a constraint specification language[3] to enforce SoD style
constraints, the simplest fix is to isolate delegated attribute sets from each other
and the delegatee’s directly assigned set. Thus, a user must choose what set
of attributes to activate at the start of a session (similar to role activation in
RBAC[4]). Isolation of attribute sets would also provide a solution to conflicting
policy evaluations and aid in user comprehension. For example, Alice would know
that if she delegates all of her attributes to Dave, at most Dave would have access
to the same permissions as he did before in addition to the permissions Alice
has access to. Users would still be able to bypass negative polices like “year 6= 4
AND year 6= 1” if not having a year attribute is considered to satisfy the policy
by delegating a subset of their attributes that omits the year attribute.

A third issue resulting from merging attribute sets is losing the descriptive-
ness of the delegatee’s attributes. In Fig. 1, after delegation, Dave’s effective
attribute set is no longer descriptive of Dave. Dave obtains a year attribute with
a value of 4 while not being a student. While this makes delegation possible and
allows Dave to satisfy the policy, it complicates policy creation (need to account
for unexpected attribute combinations) and restricts the use of attributes to the
purpose of access control (e.g. a system could not trust that an e-mail sent to
an address in a user’s effective attribute set was actually theirs).

The last issue is comprehension of what is being delegated and what needs
to be delegated to achieve a desired result. A delegator must be familiar with
the policies of the system and their own attributes. In Fig. 1, if Alice wanted to
delegate a permission she was granted from satisfying the policy “role = “under-
grad” AND year ≥ 2” she would have to understand the policy, what attribute
set she has been assigned and what attribute subset to delegate. This is further
complicated if delegated attribute sets are not isolated, as Alice would also have
to be aware of possible conflicts and unexpected attribute combinations.

Group Membership Delegation Group Membership Delegation requires an
ABAC model which supports user groups in which members of a group inherit at-
tributes assigned to that group. Fig. 3 shows an example of how user groups work
in HGABAC[7]. In this case Alice and Bob are members of the CS Faculty group

and inherit the attributes role and department with values “faculty” and “Comp-
Sci” respectively. Additionally, Bob is a member of the SoftEng Undergrad group
and inherits the values “undergrad” and “SoftEng” for the attributes role and
department. These inherited attributes are merged with the user’s directly as-
signed attributes to form the user’s effective attribute set (similar to how at-
tributes are merged in Attribute Delegation). In Group Membership Delegation,
membership in groups are delegated as opposed to the delegator’s attributes. In
Fig. 3, if Alice wanted to delegate a permission she was granted from belonging
to the CS Faculty group (e.g. from satisfying the policy “role = “faculty” AND
department = “CompSci””) to Dave she would delegate her membership in the
CS Faculty group such that Dave’s inherited set of attributes would be {(role,
{“undergrad”, “faculty”}), (department, {“SoftEng”, “CompSci”})} leading to
the effective attribute set {(year, {2}), (role, {“faculty”, “undergrad”}), (de-
partment, {“CompSci”, “SoftEng”})} when merged with his attributes.

This method of delegation has several advantages over Attribute Delegation.
User comprehension is improved as users are not required to pick individual
attributes to delegate and instead only need to consider what group memberships
are needed. Placing constraints on delegation becomes easier as delegators are
forced to delegate whole attribute sets belonging to groups at a time (constraints
can be placed on what group memberships can be delegated and by whom, rather
than individual attributes). Finally, the effective attribute set of delegatees is
more likely to remain descriptive of the delegatee as personal attributes (like
year, age, etc.) are more likely to be directly assigned than assigned to groups.

Despite these advantages, Group Membership strategies share a number of
issues in common with Attribute Delegation. Conflicting policy evaluations and
user collusion is still possible, although more restrained. For collusion to be pos-
sible, groups have to be assigned the required attribute value pairs. For example,
if the policy was “role = “faculty” AND department = “SoftEng””, Alice and
Dave could still collude to satisfy the policy (by Alice delegating her membership
in the CS Faculty group to Dave); however, it would not be possible for Alice and
Dave to collude to satisfy the policy “year > 1 AND department = “CompSci””
as year is a directly assigned attribute. Isolating attribute sets obtained through
membership delegation and attribute sets obtained through normal assignment

CS
Faculty

SoftEng
Undergr

ads

Alice Bob Dave

{(role, { faculty }),

 (department, { CompSci })}

{(role, { undergrad }),

 (department, { SoftEng })}

direct(Alice) = {}

inherited(Alice) =

{(role, { faculty }),

 (department, { CompSci })}

effective(Alice) =

{(role, { faculty }),

 (department, { CompSci })}

direct(Bob) = {(year, {4})}

inherited(Bob) =

{(role, { faculty , undergrad }),

 (department, { CompSci , SoftEng })}

effective(Bob) =

{(yaer, {4}),

 (role, { faculty , undergrad }),

 (department, { CompSci , SoftEng })}

direct(Dave) = {(year, {2})}

inherited(Dave) =

{(role, { undergrad }),

 (department, { SoftEng })}

effective(Dave) =

{(year, {2}),

 (role, { undergrad }),

 (department, { SoftEng })}

Fig. 3. Example of attribute user groups from HGABAC[7]. User groups are shown as
circles and users as rectangles. Arrows denote a user being a member of a group.

would minimize the issue and avoid unforeseen permissions being granted (e.g.
if Alice delegates her membership a group to Dave, she knows that Dave would
not satisfy any policy that she her self could not satisfy from her membership).

Group Membership Delegation also introduces a new issue. Attributes that
are directly assigned to a delegator, like the year attribute in Fig. 3, are undel-
egatable. Assuming this attribute is only directly assigned to users and never to
groups, it would be impossible to delegate membership to satisfy a policy such
as “year ≥ 2”. A system utilizing Group Membership Delegation would either
have to carefully design its groups such that all desired delegation use cases can
be accomplished through delegating group memberships or implement a second
delegation strategy in addition to Group Membership Delegation.

Permission Delegation Rather than delegating attributes (directly or indi-
rectly) Permission Delegation strategies are based on delegating permissions.
Delegators are able to delegate permissions they obtain by satisfying policies
onto delegatees so long as the granting policy remains satisfied (e.g. if the del-
egator’s attributes or an environmental attribute changes such that the policy
granting the permission is no longer satisfied, the delegated permission is re-
voked). In strategies where a group is the delegator, the permissions the group
can delegate is equal to the set of permissions a user would be granted if they
had the same attributes as the group. For example, if the users and groups from
Fig. 3 and the policy “role = “faculty” AND department = “CompSci”” existed
that granted the permission, p1, both Alice and Bob as well as the group CS
Faculty could delegate p1. If the policy “year ≥ 2 AND TIME > 9:00AM AND
TIME < 5:00PM” granted the permission p2, Bob and Dave could delegate p2
but the delegation would only be valid between 9:00AM and 5:00PM.

Permission Delegation strategies poses greater challenges in terms of im-
plementation but resolve the issues faced by the other families. As delegated
permissions are only valid while the policy granting them remains satisfied, a
system would be required to either periodically check that the delegator still
satisfies the policy or recheck the policy each time the delegatee uses the per-
mission. Depending on the size of the system and the complexity of the policies,
this could add significant overhead. The benefit is that no change is made to the
delegatee’s attribute set, limiting conflicting policy evaluations and preventing
user collusion. User comprehension is also improved as users are delegated per-
missions directly rather than attributes that only indirectly grant permissions.

3 Conclusions & Future Work

3.1 Delegation Strategies
The ideal delegation strategy depends on the needs of the implementing system;
however, a few generalizations can be made. Permission Delegation is suitable for
systems requiring high user comprehension and removes the possibility of con-
flicting policy evaluations and user collusion. Attribute Delegation is ideal when
continual policy evaluation would be difficult or low implementation complex-
ity is desired. Group Membership Delegation provides high user comprehension
with similar results to Attribute Delegation but requires group support.

Delegating to a user (X-to-User strategies) provides the closest parallel to
delegation in traditional models, however, delegating to groups (X-to-Group),
attributes (X-to-Attribute) or policies (X-to-Policy) can provide greater flexibil-
ity and allow for delegation to users whose identity is unknown during policy
creation. X-to-Group allows for delegation to groups of users in one operation
but requires group support. X-to-Policy introduces higher revocation complexity
and lower user comprehension but has the greatest flexibility. X-to-Attribute pro-
vides a middle ground between the two with less flexibility than X-to-Policy but
increases user comprehension while retaining the identity-less nature of ABAC.

3.2 Future Work

A number of directions are possible for future work. Using multiple strategies
simultaneously could provide new possibilities for delegation. Such combinations
could help overcome the limitations of individual strategies but further work is
needed to evaluate any complexities or conflicts introduced. Existing policy con-
flict resolution techniques could help mitigate the issues faced by Attribute and
Group Membership Delegation, as well as allow for hybrid strategies with min-
imal limitations. Additional work is required to determine if current techniques
are applicable. Formalizing the strategies described in this work will allow for
in-depth analysis and aid integration into existing ABAC models. Extending an
existing model with each strategy would allow for a more quantitative evaluation
and provide a reference model for future work. HGABAC is an ideal candidate
for such extensions by virtue of its support for user groups.

References

1. E. Barka, R. Sandhu, et al. A Role-Based Delegation Model and Some Extensions.
In NISSC’00, pages 396–404, 2000.

2. J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-Policy Attribute-Based En-
cryption. In SP’07, pages 321–334, 2007.

3. K. Z. Bijon, R. Krishman, and R. Sandhu. Constraints Specification in Attribute
Based Access Control. Science, 2(3):131–144, 2013.

4. D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli. Proposed
NIST Standard for Role-Based Access Control. TISSEC, 4(3):224–274, 2001.

5. X. Jin, R. Krishnan, and R. S. Sandhu. A Unified Attribute-Based Access Control
Model Covering DAC, MAC and RBAC. DBSec, 12:41–55, 2012.

6. D. Servos, S. Mohammed, J. Fiaidhi, and T. Kim. Extensions to Ciphertext-Policy
Attribute-Based Encryption to Support Distributed Environments. IJCAT, 47(2-
3):215–226, 2013.

7. D. Servos and S. L. Osborn. HGABAC: Towards a Formal Model of Hierarchical
Attribute-Based Access Control. In FPS’14, pages 187–204, 2014.

8. S. Turner, R. Housley, et al. An Internet Attribute Certificate Profile for Autho-
rization. RFC 5755, January 2010.

9. H. Wang and S. L. Osborn. Static and Dynamic Delegation in the Role Graph
Model. IEEE TKDE, 23(10):1569–1582, 2011.

