
HGAA: An Architecture to Support 

Hierarchical Group and

Attribute-Based Access Control

Daniel Servos
Western University

London, Ontario

dservos5@uwo.ca

1

Sylvia L. Osborn
Western University

London, Ontario

sylvia@csd.uwo.ca

March 21st

ABAC 2018



2

Outline

Outline

• Outline

• Background

• The Problem and Current Solutions

• HGAA

▪ Overview

▪ Attribute Authority & Attribute Certificate

▪ Policy Authority & HGABAC Name Space

▪ User Service Provider

• Implementation & Preliminary Results

• Conclusions



Background



Background 4

HGABAC
Hierarchical Group and Attribute-Based Access Control

Daniel Servos and Sylvia L. Osborn. "HGABAC: Towards 
a formal model of hierarchical attribute-based access 
control." International Symposium on Foundations and 
Practice of Security (FPS’2014). November 5, 2014

Earlier Work:
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HGABAC
Hierarchical Group and Attribute-Based Access Control

• Formal attribute-based access control model

• Introduces concepts of hierarchical user and object 
groups.

• Goals:

▪ Lightweight

▪ Easy to comprehend policies

▪ User and object groups to simplify administration

▪ Scalable

▪ Ability to emulate traditional models (MAC, DAC, RBAC)

• Shown to be capable of emulating MAC, DAC and 
RBAC (including hierarchical roles).  
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HGABAC

Attributes are defined as a combination of an attribute 
name, attribute type and a set of values.
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HGABAC

Supported attribute types:
• User
• Object
• Connection (Session)
• Environment
• Admin (Constant)
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HGABAC

User and object groups allow attributes to be 
assigned to groups of users and objects as a 
whole (based on group membership).
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HGABAC
User Group Hierarchy Example

• Group hierarchies are directed 
acyclic graphs in which all 
possible paths end in Min Group, 
a group with no attributes 
assigned.

• A member of a group is assigned 
the attributes of the group they 
are a member as well as all 
groups on the path to Min Group
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HGABAC
User Group Hierarchy Example

Example:
User assigned to Gradstudents groups 
would have an effective attribute set of:

{ 
(student_level, {1, 2}),
(employe_level, 1),
(room_access, {MC8, MC10, MC355, MC325})

}

In addition to any directly assigned attributes.
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HGABAC
Policy Language

• Original HGABAC work introduces HGPLv1

• Attribute-based policy language designed for HGABAC

• Aims to be simple and support C-like syntax

• Trinary logic: TRUE, FALSE, UNDEF
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HGABAC
Policy Language

Examples:
P1: user.age >= 18 AND object.title = "Adult Only Book"

P2: user.id = object.author

P3: user.role IN {"doctor", "intern", "staff"} AND 

user.id != object.patient

P4: object.type = "program" AND object.required_certifications

SUBSET user.certifications

P5: env.time_of_day_hour >= 9 AND env.time_of_day_hour <= 17
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The Problem

• Many ABAC models exist but few full solutions.

• Need architecture to fill in the gaps.

• Need to address questions like:

▪ Who assigns the attributes and how?

▪ How are attributes shared with each party?

▪ How does the user provide proof of attribute 
ownership?

▪ Where and how are policies evaluated?

▪ How will the model scale in real-world use?



The Problem 23

Current Solutions

• AAA Authorization Framework (RFC 2904)

• XACML: eXtensible Access Control Markup Language

• SAML: Security Assertion Markup Language

• NIST Policy Machine, of particular note:

Smriti Bhatt, Farhan Patwa, and Ravi Sandhu. 
"ABAC with Group Attributes and Attribute 
Hierarchies Utilizing the Policy Machine". ABAC 
2017. March 24.
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Limitations of Current Efforts

• Offline Policy Information Point (Attribute 
Stores/Authorities)

• Public Key Infrastructure Overhead

• Future Support for Delegation Concepts

• HGABAC Support

▪ Attributes as name value pairs

▪ Groups

▪ Hierarchy

• Lightweight Approach



HGAA:

Hierarchical Group 

Attribute Architecture
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HGAA
Overview
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HGAA
Overview

Comprised of three core service types: Attribute 
Store Services, User Services, and Policy Decision 
Point Services
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HGAA
Namespace
• Require a way of uniquely identifying attributes and 

users from different authorities.

• URI based namespace similar to one used in XACML. 
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HGAA
Namespace
• Require a way of uniquely identifying attributes and 

users from different authorities.

• URI based namespace similar to one used in XACML. 

Absolute URI:
hgabac://<authority>[[/<type>]/<element_name>]

Relative URI:
[/]<type>/<element_name>
| [/]<element_name>

type:
user
| group[/user | /object] 
| attribute[/<att_sub_type>]
| object[/<obj_sub_type>]
| session
| operation
| permission
| policy
| service

att_sub_types:
user
| object
| environment
| admin
| connection
| unknown
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HGAA
Namespace
• Require a way of uniquely identifying attributes and 

users from different authorities.

• URI based namespace similar to one used in XACML. 

Examples:

hgabac://cs1.ca/attribute/user/age

/attribute/user/age

/attribute/age
Authority
Attribute Type
Attribute Name
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Attribute Store Service

Users request an attribute certificate from their home attribute 
authority containing a subset of their assigned attributes.
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Attribute Certificate

• Loosely based on X.509 Attribute Certificates but do 
not require X.509 infrastructure

• Contains information about issuer (attribute 
authority), holder (the user), their activated attribute 
set and a number of other properties.

• Includes User and Connection attributes.

• Cryptographically signed by attribute authority.

• Offer proof of attribute ownership.
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Attribute Certificate
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Attribute Certificate
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User Services

User authenticates with and makes requests upon services by 
providing their signed attribute certificate as part of the request.
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Policy Decision Point Service

User services evaluate access request by contacting a Policy Decision 
Point Service with a copy of the user’s attribute certificate, relevant 
object attributes and policy ID.



Implementation

& Preliminary Results
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Implementation: Services
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Implementation: Services

JSON based webservices implemented in Python using Ladon
framework and SQLAlchemy ORM
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Implementation: HGPL Interpreter

• HGPL interpreter created in Python that utilizes a recursive 
descent parsing strategy.

• Policies stored as precomputed AST.

• When combined with attributes, result is a TRUE, FALSE or 
UNDEF decision.
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Preliminary Results
Attribute Certificate
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Preliminary Results
Attribute Certificate
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Preliminary Results
Attribute Authority
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Preliminary Results
HGPL Interpreter
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Preliminary Results
HGPL Interpreter
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Preliminary Results
HGPL Interpreter



Conclusions

& Future Work
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Conclusions

• First architecture that supports full HGABAC model.

• Attribute Certificate specification and encoding 
presented.

• HGABAC namespace introduced.

• HGPL updated and interpreter created.

• Preliminary evaluation suggests linear scalability (with 
number of attributes and number of AST nodes).  
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Directions for Future Work

• Explore applicability to other ABAC models.

• Further evaluate architecture under more diverse and 
real-world scenarios.

• Investigate use of XACML and/or SAML and impact on 
performance.

• Extending HGABAC and HGAA to support user-to-user 
temporary delegation.

• Incorporate administration model (use GURAG?).
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Questions?


