
HGAA: An Architecture to Support

Hierarchical Group and

Attribute-Based Access Control

Daniel Servos
Western University

London, Ontario

dservos5@uwo.ca

1

Sylvia L. Osborn
Western University

London, Ontario

sylvia@csd.uwo.ca

March 21st

ABAC 2018

2

Outline

Outline

• Outline

• Background

• The Problem and Current Solutions

• HGAA

▪ Overview

▪ Attribute Authority & Attribute Certificate

▪ Policy Authority & HGABAC Name Space

▪ User Service Provider

• Implementation & Preliminary Results

• Conclusions

Background

Background 4

HGABAC
Hierarchical Group and Attribute-Based Access Control

Daniel Servos and Sylvia L. Osborn. "HGABAC: Towards
a formal model of hierarchical attribute-based access
control." International Symposium on Foundations and
Practice of Security (FPS’2014). November 5, 2014

Earlier Work:

Background 5

HGABAC
Hierarchical Group and Attribute-Based Access Control

• Formal attribute-based access control model

• Introduces concepts of hierarchical user and object
groups.

• Goals:

▪ Lightweight

▪ Easy to comprehend policies

▪ User and object groups to simplify administration

▪ Scalable

▪ Ability to emulate traditional models (MAC, DAC, RBAC)

• Shown to be capable of emulating MAC, DAC and
RBAC (including hierarchical roles).

Background 6

HGABAC

Attributes are defined as a combination of an attribute
name, attribute type and a set of values.

Background 7

HGABAC

Supported attribute types:
• User
• Object
• Connection (Session)
• Environment
• Admin (Constant)

Background 9

HGABAC

User and object groups allow attributes to be
assigned to groups of users and objects as a
whole (based on group membership).

Background 10

HGABAC
User Group Hierarchy Example

• Group hierarchies are directed
acyclic graphs in which all
possible paths end in Min Group,
a group with no attributes
assigned.

• A member of a group is assigned
the attributes of the group they
are a member as well as all
groups on the path to Min Group

Background 11

HGABAC
User Group Hierarchy Example

Example:
User assigned to Gradstudents groups
would have an effective attribute set of:

{
(student_level, {1, 2}),
(employe_level, 1),
(room_access, {MC8, MC10, MC355, MC325})

}

In addition to any directly assigned attributes.

Background 12

HGABAC
Policy Language

• Original HGABAC work introduces HGPLv1

• Attribute-based policy language designed for HGABAC

• Aims to be simple and support C-like syntax

• Trinary logic: TRUE, FALSE, UNDEF

Background 13

HGABAC
Policy Language

Examples:
P1: user.age >= 18 AND object.title = "Adult Only Book"

P2: user.id = object.author

P3: user.role IN {"doctor", "intern", "staff"} AND

user.id != object.patient

P4: object.type = "program" AND object.required_certifications

SUBSET user.certifications

P5: env.time_of_day_hour >= 9 AND env.time_of_day_hour <= 17

The Problem

& Current Solutions

The Problem 22

The Problem

• Many ABAC models exist but few full solutions.

• Need architecture to fill in the gaps.

• Need to address questions like:

▪ Who assigns the attributes and how?

▪ How are attributes shared with each party?

▪ How does the user provide proof of attribute
ownership?

▪ Where and how are policies evaluated?

▪ How will the model scale in real-world use?

The Problem 23

Current Solutions

• AAA Authorization Framework (RFC 2904)

• XACML: eXtensible Access Control Markup Language

• SAML: Security Assertion Markup Language

• NIST Policy Machine, of particular note:

Smriti Bhatt, Farhan Patwa, and Ravi Sandhu.
"ABAC with Group Attributes and Attribute
Hierarchies Utilizing the Policy Machine". ABAC
2017. March 24.

The Problem 24

Limitations of Current Efforts

• Offline Policy Information Point (Attribute
Stores/Authorities)

• Public Key Infrastructure Overhead

• Future Support for Delegation Concepts

• HGABAC Support

▪ Attributes as name value pairs

▪ Groups

▪ Hierarchy

• Lightweight Approach

HGAA:

Hierarchical Group

Attribute Architecture

HGAA 26

HGAA
Overview

HGAA 27

HGAA
Overview

Comprised of three core service types: Attribute
Store Services, User Services, and Policy Decision
Point Services

HGAA 28

HGAA
Namespace
• Require a way of uniquely identifying attributes and

users from different authorities.

• URI based namespace similar to one used in XACML.

HGAA 29

HGAA
Namespace
• Require a way of uniquely identifying attributes and

users from different authorities.

• URI based namespace similar to one used in XACML.

Absolute URI:
hgabac://<authority>[[/<type>]/<element_name>]

Relative URI:
[/]<type>/<element_name>
| [/]<element_name>

type:
user
| group[/user | /object]
| attribute[/<att_sub_type>]
| object[/<obj_sub_type>]
| session
| operation
| permission
| policy
| service

att_sub_types:
user
| object
| environment
| admin
| connection
| unknown

HGAA 30

HGAA
Namespace
• Require a way of uniquely identifying attributes and

users from different authorities.

• URI based namespace similar to one used in XACML.

Examples:

hgabac://cs1.ca/attribute/user/age

/attribute/user/age

/attribute/age
Authority
Attribute Type
Attribute Name

HGAA 31

Attribute Store Service

Users request an attribute certificate from their home attribute
authority containing a subset of their assigned attributes.

HGAA 32

Attribute Certificate

• Loosely based on X.509 Attribute Certificates but do
not require X.509 infrastructure

• Contains information about issuer (attribute
authority), holder (the user), their activated attribute
set and a number of other properties.

• Includes User and Connection attributes.

• Cryptographically signed by attribute authority.

• Offer proof of attribute ownership.

HGAA 33

Attribute Certificate

HGAA 34

Attribute Certificate

HGAA 35

User Services

User authenticates with and makes requests upon services by
providing their signed attribute certificate as part of the request.

HGAA 36

Policy Decision Point Service

User services evaluate access request by contacting a Policy Decision
Point Service with a copy of the user’s attribute certificate, relevant
object attributes and policy ID.

Implementation

& Preliminary Results

Implementation & Results 41

Implementation: Services

Implementation & Results 42

Implementation: Services

JSON based webservices implemented in Python using Ladon
framework and SQLAlchemy ORM

Implementation & Results 43

Implementation: HGPL Interpreter

• HGPL interpreter created in Python that utilizes a recursive
descent parsing strategy.

• Policies stored as precomputed AST.

• When combined with attributes, result is a TRUE, FALSE or
UNDEF decision.

Implementation & Results 44

Preliminary Results
Attribute Certificate

Implementation & Results 45

Preliminary Results
Attribute Certificate

Implementation & Results 46

Preliminary Results
Attribute Authority

Implementation & Results 47

Preliminary Results
HGPL Interpreter

Implementation & Results 48

Preliminary Results
HGPL Interpreter

Implementation & Results 49

Preliminary Results
HGPL Interpreter

Conclusions

& Future Work

Conclusions & Future Work 51

Conclusions

• First architecture that supports full HGABAC model.

• Attribute Certificate specification and encoding
presented.

• HGABAC namespace introduced.

• HGPL updated and interpreter created.

• Preliminary evaluation suggests linear scalability (with
number of attributes and number of AST nodes).

Conclusions & Future Work 52

Directions for Future Work

• Explore applicability to other ABAC models.

• Further evaluate architecture under more diverse and
real-world scenarios.

• Investigate use of XACML and/or SAML and impact on
performance.

• Extending HGABAC and HGAA to support user-to-user
temporary delegation.

• Incorporate administration model (use GURAG?).

Questions 53

Questions?

