
HGABAC: Towards a Formal Model of Hierarchical
Attribute-Based Access Control

Daniel Servos
dservos5@uwo.ca

Sylvia L. Osborn
sylvia@csd.uwo.ca

The 7th International Symposium on Foundations & Practice of
Security, November 2014

Department of Computer Science

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 1 / 31

mailto:dservos5@uwo.ca
mailto:sylvia@csd.uwo.ca

Background

Role-Based Access Control (RBAC)

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 2 / 31

Background

Role-Based Access Control (RBAC)

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 2 / 31

Background

Role-Based Access Control (RBAC)

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 2 / 31

Background

Attribute-Based Access Control (ABAC)

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 2 / 31

Background

Attribute-Based Access Control (ABAC)

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 2 / 31

Background

Attribute-Based Access Control (ABAC)

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 2 / 31

Background

Attribute-Based Access Control (ABAC)

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 2 / 31

Related Work & Current Models

Comparison of Notable Models of Attribute-Based Access Control
Logic-based
Framework
for ABAC

ABACα

ABAC for
Web

Services
WS-ABAC ABMAC

Hierarchical
Hierarchical
attributes 7 7 7 7

Object
Attributes 7 3 3 3 3

User Attributes 3 3 3 3 3
Environment

Attributes 7 7 3 3 3

Connection
Attributes 7 7 7 7

Shown in
example but
not model

Administrative
Attributes 7 7 7 7 7

Separation of
Duties 7 7 7 7 7

General Model 3 3 For web
services

For web
services

For grid
computing

Formal Model
Only models
policies and
evaluation

3 Simplistic Simplistic 3

Administrative
Model 7 Limited 7 7 7

Can Model
DAC, MAC,
and RBAC

Not demon-
strated 3 Not demon-

strated
Not demon-

strated
Not demon-

strated

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 5 / 31

Open Problems

Limited work towards a separation of duties model for ABAC.

Limited work towards a administrative model of ABAC.

Auditability of ABAC systems.

Related Work & Current Models

Comparison of Notable Models of Attribute-Based Access Control
Logic-based
Framework
for ABAC

ABACα

ABAC for
Web

Services
WS-ABAC ABMAC

Hierarchical
Hierarchical
attributes 7 7 7 7

Object
Attributes 7 3 3 3 3

User Attributes 3 3 3 3 3
Environment

Attributes 7 7 3 3 3

Connection
Attributes 7 7 7 7

Shown in
example but
not model

Administrative
Attributes 7 7 7 7 7

Separation of
Duties 7 7 7 7 7

General Model 3 3 For web
services

For web
services

For grid
computing

Formal Model
Only models
policies and
evaluation

3 Simplistic Simplistic 3

Administrative
Model 7 Limited 7 7 7

Can Model
DAC, MAC,
and RBAC

Not demon-
strated 3 Not demon-

strated
Not demon-

strated
Not demon-

strated

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 5 / 31

Open Problems

Lack of hierarchical structures comparable to RBAC.

Lack of group based administration of multiple users.

Limited work towards a separation of duties model for ABAC.

Limited work towards a administrative model of ABAC.

Auditability of ABAC systems.

Need for formal foundational models of ABAC.

Related Work & Current Models

Comparison of Notable Models of Attribute-Based Access Control
Logic-based
Framework
for ABAC

ABACα

ABAC for
Web

Services
WS-ABAC ABMAC

Hierarchical
Hierarchical
attributes 7 7 7 7

Object
Attributes 7 3 3 3 3

User Attributes 3 3 3 3 3
Environment

Attributes 7 7 3 3 3

Connection
Attributes 7 7 7 7

Shown in
example but
not model

Administrative
Attributes 7 7 7 7 7

Separation of
Duties 7 7 7 7 7

General Model 3 3 For web
services

For web
services

For grid
computing

Formal Model
Only models
policies and
evaluation

3 Simplistic Simplistic 3

Administrative
Model 7 Limited 7 7 7

Can Model
DAC, MAC,
and RBAC

Not demon-
strated 3 Not demon-

strated
Not demon-

strated
Not demon-

strated

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 5 / 31

Open Problems

Lack of hierarchical structures comparable to RBAC.

Lack of group based administration of multiple users.

Limited work towards a separation of duties model for ABAC.

Limited work towards a administrative model of ABAC.

Auditability of ABAC systems.

Need for formal foundational models of ABAC.

Related Work & Current Models

Comparison of Notable Models of Attribute-Based Access Control
Logic-based
Framework
for ABAC

ABACα

ABAC for
Web

Services
WS-ABAC ABMAC HGABAC

Hierarchical
Hierarchical
attributes 7 7 7 7 3

Object
Attributes 7 3 3 3 3 3

User Attributes 3 3 3 3 3 3
Environment

Attributes 7 7 3 3 3 3

Connection
Attributes 7 7 7 7

Shown in
example but
not model

3

Administrative
Attributes 7 7 7 7 7 3

Separation of
Duties 7 7 7 7 7 7

General Model 3 3 For web
services

For web
services

For grid
computing 3

Formal Model
Only models
policies and
evaluation

3 Simplistic Simplistic 3 3

Administrative
Model 7 Limited 7 7 7 7

Can Model
DAC, MAC,
and RBAC

Not demon-
strated 3 Not demon-

strated
Not demon-

strated
Not demon-

strated 3

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 5 / 31

Open Problems

Limited work towards a separation of duties model for ABAC.

Limited work towards a administrative model of ABAC.

Auditability of ABAC systems.

HGABAC Model

User
Attributes

Object
Attributes

Users

Objects

User Attribute
Assignment

Object Attribute Assignment

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 6 / 31

Attributes

attr = (name, type, value)

HGABAC Model

User
Attributes

Object
Attributes

Users

Objects

User Attribute
Assignment

Object Attribute Assignment

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 6 / 31

Attributes

attr = (name, type, value)

HGABAC Model

User
Attributes

Object
Attributes

Users

Objects

User Attribute
Assignment

Policies

Object Attribute Assignment

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 6 / 31

Attributes

attr = (name, type, value)

Policy Language

Three-valued logic (True, False and Undefined).

Boolean statements using AND, OR, and NOT logical operations.

AND, OR and NOT truth tables from Kleene K3 logic.

Support for value and set comparison operations <, >, ≤, ≥, =, 6=,
∈, ⊂, etc.

Examples

(a) user.id IN {5, 72, 4, 6, 4} OR user.id = object.owner

(b) object.required perms SUBSET user.perms AND user.age >= 18

(c) user.admin OR (user.role = “doctor” AND user.id != object.patient)

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 7 / 31

Policy Language

Three-valued logic (True, False and Undefined).

Boolean statements using AND, OR, and NOT logical operations.

AND, OR and NOT truth tables from Kleene K3 logic.

Support for value and set comparison operations <, >, ≤, ≥, =, 6=,
∈, ⊂, etc.

Examples

(a) user.id IN {5, 72, 4, 6, 4} OR user.id = object.owner

(b) object.required perms SUBSET user.perms AND user.age >= 18

(c) user.admin OR (user.role = “doctor” AND user.id != object.patient)

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 7 / 31

HGABAC Model

User
Attributes

Object
Attributes

Users

Objects

User Attribute
Assignment

Policies

Object Attribute Assignment

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 8 / 31

Permissions

user.id = object.patient OR user.role = “doctor” → read
user.role = “doctor” → write

HGABAC Model

User
Attributes

Object
Attributes

Users

Objects

User Attribute
Assignment

Policies Operations

Permissions

Object Attribute Assignment

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 8 / 31

Permissions

user.id = object.patient OR user.role = “doctor” → read
user.role = “doctor” → write

HGABAC Model

User
Attributes

Object
Attributes

Users

Objects

User Attribute
Assignment

Policies Operations

Permissions

Object Attribute Assignment

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 8 / 31

Permissions

user.id = object.patient OR user.role = “doctor” → read
user.role = “doctor” → write

HGABAC Model

User
Attributes

Object
Attributes

Users

ObjectsSessions

User Attribute
Assignment

Attribute
Activation

User Session

Policies Operations

Permissions

Object Attribute Assignment

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 8 / 31

Permissions

user.id = object.patient OR user.role = “doctor” → read
user.role = “doctor” → write

HGABAC Model

User
Attributes

Object
Attributes

Users

Objects

User
Groups

Sessions

User Group
Hierarchy

User Group Assignment

User Group
Attribute

Assignment

User Attribute
Assignment

Attribute
Activation

User Session

Policies Operations

Permissions

Object Attribute Assignment

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 8 / 31

Permissions

user.id = object.patient OR user.role = “doctor” → read
user.role = “doctor” → write

Group Graph

Min Group
{}

Undergrads
{(studet_level, 1),

(room_access, {MC8,

MC10})}

Staff

{(employe_level, 1),
(room_access,

{MC355})}

Gradstudents
{(studet_level, 2),

(room_access, {MC342,

MC325})}

Faculty

{(employe_level, 2),
(room_access,

{MC320})}

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 9 / 31

Group Graph

Min Group
{}

Undergrads
{(studet_level, 1),

(room_access, {MC8,

MC10})}

Staff

{(employe_level, 1),
(room_access,

{MC355})}

Gradstudents
{(studet_level, 2),

(room_access, {MC342,

MC325})}

Faculty

{(employe_level, 2),
(room_access,

{MC320})}

Effective: employe_level = {1, 2}
 room_access = {MC355, MC320}

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 9 / 31

Group Graph

Min Group
{}

Undergrads
{(studet_level, 1),

(room_access, {MC8,

MC10})}

Staff

{(employe_level, 1),
(room_access,

{MC355})}

Gradstudents
{(studet_level, 2),

(room_access, {MC342,

MC325})}

Faculty

{(employe_level, 2),
(room_access,

{MC320})}

Effective: employe_level = {1}
 student_level = {1,2}
 room_access = {MC8, MC10, MC355, MC342, MC325}

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 9 / 31

HGABAC Model

User
Attributes

Object
Attributes

Users

Objects

User
Groups

Sessions

User Group
Hierarchy

User Group Assignment

User Group
Attribute

Assignment

User Attribute
Assignment

Attribute
Activation

User Session

Policies Operations

Permissions

Object Attribute Assignment

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 10 / 31

HGABAC Model

User
Attributes

Object
Attributes

Users

Objects

User
Groups

Sessions

User Group
Hierarchy

User Group Assignment

User Group
Attribute

Assignment

User Attribute
Assignment

Attribute
Activation

User Session

Policies Operations

Permissions

Object Attribute Assignment

Object
Groups

Object
Group

Assignment

Object Group
Attribute

Assignment

Object Group
Hierarchy

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 10 / 31

HGABAC Model

User
Attributes

Object
Attributes

Users

Objects

User
Groups

Sessions

User Group
Hierarchy

User Group Assignment

User Group
Attribute

Assignment

User Attribute
Assignment

Attribute
Activation

User Session

Policies Operations

Permissions

Object Attribute Assignment

Object
Groups

Object
Group

Assignment

Object Group
Attribute

Assignment

Object Group
Hierarchy

Environment
& Admin

Attributes

Connection
Attributes

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 10 / 31

Use Cases

Provide access control for a hypothetical university library.

Access control is desired on four different kinds of resources; books,
course material (textbooks, lecture notes, etc.), periodicals, and
archived records.

Assumed User and Object Group Graphs:

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 11 / 31

Use Cases

Provide access control for a hypothetical university library.

Access control is desired on four different kinds of resources; books,
course material (textbooks, lecture notes, etc.), periodicals, and
archived records.

Assumed User and Object Group Graphs:

Min Group
{}

Undergrads
{(user_type, {undergrad})}

Staff
{(user_type, {staff})}

Gradstudents
{(user_type, {grad})}

Faculty
{(user_type, {faculty})}

CS Courses
{(enrolled_in, {cs_course})}

CS101
{(enrolled_in, {cs101})}

CS203
{(enrolled_in, {cs203})}

Min Group
{}

Books
{(object_type, {book})}

Course Material

{(object_type, {course})}

Periodicals
{(object_type,

{periodical})}

Archived Records
{(object_type, {archive})}

CS101
{(req_course, {cs101})}

CS203
{(req_course, {cs203})}

Restricted Books
{(restricted, {true})}

CS Records
{(depart, {compsci})}

CS Department
{(depart, {compsci})}

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 11 / 31

Use Cases

Case A

Undergraduate students may check out any unrestricted book and any
course materials for a course in which they are enrolled.

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 12 / 31

Use Cases

Case A

Undergraduate students may check out any unrestricted book and any
course materials for a course in which they are enrolled.

“undergrad” IN user.user type AND (
(object.object type = “book” AND NOT object.restricted) OR
(object.object type = “course” AND user.enrolled in IN object.req course)

) → check out book

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 12 / 31

Use Cases

Case B

Faculty may check out any book, periodical or course material as well as
any archived record from their department.

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 14 / 31

Use Cases

Case B

Faculty may check out any book, periodical or course material as well as
any archived record from their department.

“faculty” IN user.user type AND (
object.object type IN {“book”, “periodical”, “course”} OR (

object.object type = “archive” AND object.depart IN user.depart
)

) → check out book

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 14 / 31

Use Cases

Case C

Students enrolled in a computer science course may access periodicals
from the university network.

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 16 / 31

Use Cases

Case C

Students enrolled in a computer science course may access periodicals
from the university network.

Four connection attributes are required which represent the user’s IP
address; “ip octet 1” represents the first digit of the user’s IP address,
“ip octet 2”, the second and so on.

It is assumed that IP addresses matching the pattern “192.168.*.*” are
internal to the university’s network.

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 16 / 31

Use Cases

Case C

Students enrolled in a computer science course may access periodicals
from the university network.

Four connection attributes are required which represent the user’s IP
address; “ip octet 1” represents the first digit of the user’s IP address,
“ip octet 2”, the second and so on.

It is assumed that IP addresses matching the pattern “192.168.*.*” are
internal to the university’s network.

“cs course” IN user.enrolled in AND
connect.ip octet 1 = 192 AND
connect.ip octet 2 = 168 AND
object.object type = “periodical”

→ check out book

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 16 / 31

Evaluation

Aimed to test whether the hierarchical user and object groups of the
HGABAC model provide an advantage over non hierarchical ABAC
models.

Each model evaluated on basis of number of attribute and group
assignments needed to full the requirements of each use case.

Assumed non hierarchical models support environment and
connection attributes for cases 4 and 5.

Worst case (each user is enrolled in each course and each object is of
an object type such that it will have the most attributes) is assumed.

A constant number of courses and departments are assumed.

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 17 / 31

Results
Case A

Undergraduate students may check out any unrestricted book and any course materials for a course in which they are enrolled.

0
200

400
600

800
1,000

200
400

600
800

1,0001,000

2,000

3,000

4,000

5,000

6,000

TA = 4U + 2O

TA = 3U + O + 9

Number of Users (U)

Number of Objects (O)

T
o

ta
l

A
ss

ig
n

m
en

ts
(T

A
)

Case A: Total Assignments

HGABAC

ABAC

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 19 / 31

Results
Case B

Faculty may check out any book, periodical or course material as well as any archived record from their department.

0
200

400
600

800
1,000

200
400

600
800

1,000
1,000

2,000

3,000

4,000

TA = 2U + 2O

TA = 2U + O + 12

Number of Users (U)

Number of Objects (O)

T
o

ta
l

A
ss

ig
n

m
en

ts
(T

A
)

Case B: Total Assignments

HGABAC

ABAC

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 21 / 31

Results
Case C

Students enrolled in a computer science course may access periodicals from the university network.

0 5
10 15 20 25 30

5
10

15
20

25
30

10

20

30

40

50

60
TA = U + O

TA = U + O + 2

Number of Users (U)

Number of Objects (O)

T
o

ta
l

A
ss

ig
n

m
en

ts
(T

A
)

Case C: Total Assignments

ABAC

HGABAC

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 23 / 31

Emulating Traditional Models

DAC Style Configuration

Assigning each user an “id” attribute which contains a unique
identifier.

Assigning each object an attribute for each access mode (e.g. “read”
and “write”) which contains the set of user ids corresponding to users
who have access to that object for the given access mode.

Policy is simply: (user.id IN object.read) → read
(user.id IN object.write) → write

For administration add “owner” attribute to objects that contains a
single user id corresponding to the owner of the object. Policy is:

(user.id = object.owner) → admin operation

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 24 / 31

Emulating Traditional Models

MAC Style Configuration

HGABAC’s user groups allow configurations that emulate MAC style
lattice based access control.

For MAC with liberal *-property, each user is assigned only to a single
read group and a single write group. Each read group is assigned a
single attribute named “read” with a value equal to its clearance level
and each write group is assigned a single attribute named “write”
with a value equal to its clearance level.

Policy is simply: (object.level IN user.read)→ read
(object.level IN user.write) → write

Users are limited to only activating attributes inherited from groups of
a single security level in any given session.

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 25 / 31

Emulating Traditional Models

MAC Example

TS

S1 S2 S3

C1 C2

U

TSR

S1R S2R S3R

C1R C2R

UR

UW

C1W C2W

TSW

S1W S2W S3W

min_group

TSR

S1R S2R S3R

C1R C2R

UR

min_group

UW
C1W

C2W
S1W
S2W
S3W
TSW

Security Lattice Liberal-* Group Graph Strict-* Group Graph

Liberal *-property Attributes:
g direct(g) effective(g)
min group ∅ ∅
UR “UR” “UR”
C1R “C1R” “UR”, “C1R”
C2R “C2R” “UR”, “C2R”
S1R “S1R” “UR”, “C1R”, “S1R”
S2R “S2R” “UR”, “C1R”, “C2R”, “S2R”
S3R “S3R” “UR”, “C2R”, “S3R”
TSR “TSR” “UR”, “C1R”, “C2R”, “S1R”, “S2R”, “S3R”, “TSR”
TSW “TSW” “TSW”
S1W “S1W” “TSW”, “S1W”
S2W “S2W” “TSW”, “S2W”
S3W “S2W” “TSW”, “S3W”
C1W “C1W” “TSW”, “S1W”, “S2W”, “C1W”
C2W “C2W” “TSW”, “S2W”, “S3W”, “C2W”
UW “UW” “TSW”, “S1W”, “S2W”, “S3W”, “C1W”, “C2W”, “UW”

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 26 / 31

Emulating Traditional Models

RBAC Style Configuration

HGABAC’s user groups can also enforce hierarchical RBAC style
access control by having each user group represent a role and its
assigned attributes, represent permissions.

Each group is assigned a single attribute named “perms” that
contains the set of permissions that group grants.

Objects are tagged with an attribute for each access mode that
contains the set of permissions that grant that access mode on the
object.

Policy is simply: (user.perms IN object.read) → read
(user.perms IN object.write) → write

Emulating the separation of duty style constraints possible in NIST
RBAC is left to future work.

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 27 / 31

Emulating Traditional Models

RBAC Example

MAX_ROLE

GradStudent Faculty

StaffUndergrad

MAX_ROLE

GradStudent Faculty

StaffUndergrad

min_group

Role Hierarchy Group Graph

Role Direct Permissions
Undergrad P1
Staff P2
GradStudent P3, P4
Faculty P5, P6
MAX ROLE ∅

g direct(g) effective(g)
min group ∅ ∅
Undergrad P1 P1
Staff P2 P2
GradStudent P3, P4 P1, P3, P4
Faculty P5, P6 P2, P5, P6
MAX ROLE ∅ P1, P2, P3, P4, P5, P6

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 28 / 31

Conclusions and Future Work
Conclusions:

Introduced a new model of ABAC, entitled HGABAC, that supports boolean rule
based ABAC, hierarchical user and object groups, as well as environment,
connection and administrative attributes.

Showed that adding user and object groups enables greater flexibility when
modelling real world situations.

Demonstrated that hierarchical user and object groups can simplify administration
by reducing complexity in terms of the number of attribute and group assignments
required.

Showed that HGABAC is able to emulate the traditional models including
hierarchical RBAC.

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 29 / 31

Conclusions and Future Work
Future Work:

Extending HGABAC to support features required for real world use.

Support for separation of duty.

Delegation.

Administrative model.

Expanding the policy language or alternatively exploring using/extending XACML.

Conditional user and object group membership.

Reference implementation.

Daniel Servos & Sylvia L. Osborn HGABAC FPS’2014 30 / 31

