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Related Work & Current Models

Comparison of Notable Models of Attribute-Based Access Control
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Open Problems

Limited work towards a separation of duties model for ABAC.

Limited work towards a administrative model of ABAC.

Auditability of ABAC systems.
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Open Problems

Lack of hierarchical structures comparable to RBAC.

Lack of group based administration of multiple users.

Limited work towards a separation of duties model for ABAC.

Limited work towards a administrative model of ABAC.

Auditability of ABAC systems.

Need for formal foundational models of ABAC.
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Policy Language

Three-valued logic (True, False and Undefined).

Boolean statements using AND, OR, and NOT logical operations.

AND, OR and NOT truth tables from Kleene K3 logic.

Support for value and set comparison operations <, >, ≤, ≥, =, 6=,
∈, ⊂, etc.

Examples

(a) user.id IN {5, 72, 4, 6, 4} OR user.id = object.owner

(b) object.required perms SUBSET user.perms AND user.age >= 18

(c) user.admin OR (user.role = “doctor” AND user.id != object.patient)
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Permissions

user.id = object.patient OR user.role = “doctor” → read
user.role = “doctor” → write
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Faculty
 

{(employe_level, 2), 
(room_access, 

{MC320})}
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Use Cases

Provide access control for a hypothetical university library.

Access control is desired on four different kinds of resources; books,
course material (textbooks, lecture notes, etc.), periodicals, and
archived records.

Assumed User and Object Group Graphs:
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Use Cases

Case A

Undergraduate students may check out any unrestricted book and any
course materials for a course in which they are enrolled.
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Use Cases

Case B

Faculty may check out any book, periodical or course material as well as
any archived record from their department.
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Use Cases

Case C

Students enrolled in a computer science course may access periodicals
from the university network.
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address; “ip octet 1” represents the first digit of the user’s IP address,
“ip octet 2”, the second and so on.

It is assumed that IP addresses matching the pattern “192.168.*.*” are
internal to the university’s network.

“cs course” IN user.enrolled in AND
connect.ip octet 1 = 192 AND
connect.ip octet 2 = 168 AND
object.object type = “periodical”
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Evaluation

Aimed to test whether the hierarchical user and object groups of the
HGABAC model provide an advantage over non hierarchical ABAC
models.

Each model evaluated on basis of number of attribute and group
assignments needed to full the requirements of each use case.

Assumed non hierarchical models support environment and
connection attributes for cases 4 and 5.

Worst case (each user is enrolled in each course and each object is of
an object type such that it will have the most attributes) is assumed.

A constant number of courses and departments are assumed.
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Results
Case A

Undergraduate students may check out any unrestricted book and any course materials for a course in which they are enrolled.
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Results
Case B

Faculty may check out any book, periodical or course material as well as any archived record from their department.
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Results
Case C

Students enrolled in a computer science course may access periodicals from the university network.
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Emulating Traditional Models

DAC Style Configuration

Assigning each user an “id” attribute which contains a unique
identifier.

Assigning each object an attribute for each access mode (e.g. “read”
and “write”) which contains the set of user ids corresponding to users
who have access to that object for the given access mode.

Policy is simply: (user.id IN object.read) → read
(user.id IN object.write) → write

For administration add “owner” attribute to objects that contains a
single user id corresponding to the owner of the object. Policy is:

(user.id = object.owner) → admin operation
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Emulating Traditional Models

MAC Style Configuration

HGABAC’s user groups allow configurations that emulate MAC style
lattice based access control.

For MAC with liberal *-property, each user is assigned only to a single
read group and a single write group. Each read group is assigned a
single attribute named “read” with a value equal to its clearance level
and each write group is assigned a single attribute named “write”
with a value equal to its clearance level.

Policy is simply: (object.level IN user.read)→ read
(object.level IN user.write) → write

Users are limited to only activating attributes inherited from groups of
a single security level in any given session.
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Emulating Traditional Models

MAC Example

TS

S1 S2 S3

C1 C2

U

TSR

S1R S2R S3R

C1R C2R

UR

UW

C1W C2W

TSW

S1W S2W S3W

min_group

TSR

S1R S2R S3R

C1R C2R

UR

min_group

UW
C1W

C2W
S1W
S2W
S3W
TSW

Security Lattice Liberal-* Group Graph Strict-* Group Graph

Liberal *-property Attributes:
g direct(g) effective(g)
min group ∅ ∅
UR “UR” “UR”
C1R “C1R” “UR”, “C1R”
C2R “C2R” “UR”, “C2R”
S1R “S1R” “UR”, “C1R”, “S1R”
S2R “S2R” “UR”, “C1R”, “C2R”, “S2R”
S3R “S3R” “UR”, “C2R”, “S3R”
TSR “TSR” “UR”, “C1R”, “C2R”, “S1R”, “S2R”, “S3R”, “TSR”
TSW “TSW” “TSW”
S1W “S1W” “TSW”, “S1W”
S2W “S2W” “TSW”, “S2W”
S3W “S2W” “TSW”, “S3W”
C1W “C1W” “TSW”, “S1W”, “S2W”, “C1W”
C2W “C2W” “TSW”, “S2W”, “S3W”, “C2W”
UW “UW” “TSW”, “S1W”, “S2W”, “S3W”, “C1W”, “C2W”, “UW”
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Emulating Traditional Models

RBAC Style Configuration

HGABAC’s user groups can also enforce hierarchical RBAC style
access control by having each user group represent a role and its
assigned attributes, represent permissions.

Each group is assigned a single attribute named “perms” that
contains the set of permissions that group grants.

Objects are tagged with an attribute for each access mode that
contains the set of permissions that grant that access mode on the
object.

Policy is simply: (user.perms IN object.read) → read
(user.perms IN object.write) → write

Emulating the separation of duty style constraints possible in NIST
RBAC is left to future work.
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Emulating Traditional Models

RBAC Example

MAX_ROLE

GradStudent Faculty

StaffUndergrad

MAX_ROLE

GradStudent Faculty

StaffUndergrad

min_group

Role Hierarchy Group Graph

Role Direct Permissions
Undergrad P1
Staff P2
GradStudent P3, P4
Faculty P5, P6
MAX ROLE ∅

g direct(g) effective(g)
min group ∅ ∅
Undergrad P1 P1
Staff P2 P2
GradStudent P3, P4 P1, P3, P4
Faculty P5, P6 P2, P5, P6
MAX ROLE ∅ P1, P2, P3, P4, P5, P6
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Conclusions and Future Work
Conclusions:

Introduced a new model of ABAC, entitled HGABAC, that supports boolean rule
based ABAC, hierarchical user and object groups, as well as environment,
connection and administrative attributes.

Showed that adding user and object groups enables greater flexibility when
modelling real world situations.

Demonstrated that hierarchical user and object groups can simplify administration
by reducing complexity in terms of the number of attribute and group assignments
required.

Showed that HGABAC is able to emulate the traditional models including
hierarchical RBAC.
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Conclusions and Future Work
Future Work:

Extending HGABAC to support features required for real world use.

Support for separation of duty.

Delegation.

Administrative model.

Expanding the policy language or alternatively exploring using/extending XACML.

Conditional user and object group membership.

Reference implementation.
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